1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

Solutions Search - Signal Conditioning

Reference Filter Increases 32-Bit ADC SNR by 6dB

Guy Hoover - Applications Engineer Sep 26th 2017
Design Note DN568: Introduction Attaining optimal SNR performance from an ADC isn’t just a matter of providing a low noise signal to the ADC’s input. Providing a low noise reference voltage is just as important. While reference noise has no effect at zero-scale, at full-scale any noise on the reference will be visible ...

Blog Post 

 

Precision Ultralow Power High Side Current Sense

Catherine Chang - Applications Engineer Sep 19th 2017
Design Note 1045: Introduction Precision high side measurement of microamp currents requires a small value sense resistor and a low offset voltage, ultralow-power amplifier. The LTC®2063 zero-drift amplifier has a maximum input offset voltage of just 5µV and draws just 1.4µA making it a great choice for building ...

Blog Post 

 

Converting a Low Distortion Single-Ended Sine Source to Fully Differential

Guy Hoover - Applications Engineer Sep 10th 2017
Customers looking for a way to evaluate ADCs with differential inputs will find themselves in need of a low distortion, low noise differential sine source. Single-ended sine sources can be obtained by building a simple Wien-bridge oscillator or by employing any of several readily available audio oscillators. Differential sine ...

Blog Post 

 

LTspice: Worst-Case Circuit Analysis with Minimal Simulations Runs

Joseph Spencer - Field Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Jun 8th 2017
When designing a circuit in LTspice, you may wish to assess the impact of component tolerances. For example, the gain error introduced by non-ideal resistors in an op amp circuit. This article illustrates a method that reduces the number of simulations needed, and as a result speeds your time to results. Varying a Parameter LTSpice ...

Blog Post LTspice 

 

Lower Power Op Amp: Low Noise Reference, Utility Sine Wave

Catherine Chang - Applications Engineer
Philip Karantzalis - Senior Apps Eng
Aaron Schultz - Applications Manager Signal Conditioning
May 22nd 2017
Design Note DN1042: Introduction Our op amp family has expanded with industryleading speed versus supply current. The LTC®6258/ LTC6259/LTC6260 family (single, dual, quad) provides 1.3MHz at a super low 20μA supply current, with 400μV maximum offset voltage and rail-to-rail input and output. In combination with a ...

Blog Post 

 

Lower Power Op Amp: Utility Sine Wave

Aaron Schultz - Applications Manager Signal Conditioning
Philip Karantzalis - Senior Apps Eng
Catherine Chang - Applications Engineer
May 22nd 2017
Design Note DN564: Introduction Our op amp family has expanded with industryleading speed versus supply current. The LTC®6258/ LTC6259/LTC6260 family (single, dual, quad) provides 1.3MHz at a super low 20μA supply current, with 400μV maximum offset voltage and rail-to-rail input and output. In combination with a 1.8V ...

Blog Post 

 

Low Power Op Amp: Low Power Filter, Headphone Driver Revisited

Aaron Schultz - Applications Manager Signal Conditioning May 18th 2017
Design Note DN563: Introduction A new family of op amps features industry leading speed versus supply current. The LTC6261/LTC6262/ LTC6263 family (single, dual, quad) provides 30MHz at a low 240μA supply current, with 400μV maximum offset voltage and rail-to-rail input and output. In combination with 1.8V to 5.25V supply, ...

Blog Post 

 

Wireless Current Sense Circuit Floats with Sense Resistor

Kris Lokere - Strategic Applications Manager Apr 25th 2017
Introduction Measuring the current that flows through a sense resistor seems easy. Amplify the voltage, read it with an ADC, and now you know what the current is. But it gets more difficult if the sense resistor itself sits at a voltage that is very different from system ground. Typical solutions bridge that voltage difference ...

Blog Post 

 

LT8310/LT1431 92W Isolated Forward Converter with Opto Feedback; VIN = 48V, VOUT = 54V@1.7A

George Qian - Senior Applications Engineer Mar 29th 2017
The LT8310 is a constant-frequency resonant reset forward converter controller with a low side N-channel MOSFET gate driver. The LT8310 has a wide input voltage range from 6V to 100V. Its switching frequency can be programed from 100kHz to 500kHz to optimize efficiency, performance or external component size. The LT8310’s ...

Blog Post Circuit LTspice 

 

Improving Linearity by Using Absorptive Filters

Clarence Mayott - Applications Engineer Mar 10th 2017
Introduction: When driving a direct sampling high speed ADC, the most likely place to degrade the performance is the interface between the final amplifier and the ADC. With any direct sampling ADC there will be nonlinear charge produced in the sampling process. This charge is reflected into the input network each time the sampling ...

Blog Post 

 

High Linearity, Low Noise LTC2387-18 Drivers for Sinusoidal Signals

Doug Stuetzle - Senior Analog Applications Engineer Jan 10th 2017
Introduction The LTC2387-18 is a high speed SAR (Successive Approximation Register) ADC suited for high linearity, low noise applications. This ADC is capable of sampling at up to 15Msps, which allows it to convert signals at frequencies of several MHz. It is well-suited to convert both pulsed and continuous signals in this ...

Blog Post 

 

LTC2387 Drivers Part II: Drivers for Imaging

Derek Redmayne - Staff Scientist Dec 8th 2016
A Driver for Imaging (short version) The circuit shown below works great. You should try it. This is intended for nominally 0-3V single ended or differential signals, from CCDs, CMOS image sensors, or other similar signal sources. As shown, SNR is 88 dB. With the AD8008, in place of U1, and a few other minor changes, it ...

Blog Post 

 

Tuned IF Amplifier Applications

John Chung - Applications Engineer Oct 21st 2016
Introduction The LTC6431-20 and LTC6433-15 are single-ended RF / IF gain block amplifiers that feature very high OIP3 with low noise and a gain of 20dB and 15dB respectively. The unique combination of high linearity, low noise and low power dissipation make this an ideal candidate for many signal-chain applications. These fixed ...

Blog Post 

 

Hybrid Wide Dimming Ratio Linear LED Current Controller Using LT8614 & LT3083/LT6015

Tom Mosteller - Field Applications Engineer Oct 17th 2016
Many applications for LED illumination require wide dimming ratios. This can be accomplished simply via an adjustable current source as show below.  The current source can be varied by a number of different means, and a large LED current range can be achieved. The primary problem with this technique is that the power dissipation ...

Blog Post Circuit LTspice 

 

Op Amp Precision Positive & Negative Clipper using LT6015/LT6016/LT6017

Tom Mosteller - Field Applications Engineer
Aaron Schultz - Applications Manager Signal Conditioning
Oct 3rd 2016
It can be a challenge to match the voltage range of an analog signal to the input range of an analog to digital converter (ADC). Exceeding the ADC’s input range will give an incorrect reading, and if the input goes far enough beyond the power supply rails substrate currents can flow into the ADC which can cause latch up ...

Blog Post Circuit LTspice 

 

Single-Ended to Differential Driver Circuit for the LTC2387-18 SAR ADC

Doug Stuetzle - Senior Analog Applications Engineer Sep 26th 2016
The LTC®2387-18 is a 15Msps, highly linear, low-noise SAR converter with differential inputs. The combination of excellent linearity and wide dynamic range makes this ADC ideal for high speed imaging and instrumentation applications. No-latency operation provides a unique solution for high speed control loop applications. ...

Blog Post Circuit LTspice 

 

LTC2387 Drivers Part III: Trans-Impedance Amplifier/Driver

Derek Redmayne - Staff Scientist Sep 8th 2016
This is unabashedly a classic case of what marketing calls “a solution looking for a problem”. It is an example of how the full SNR of the LTC2387 may be realized for a real world signal. Most signals originating in low level circuitry, in sensors, or in the real world, will require significant gain to develop 8Vp-p ...

Blog Post 

 

Build a Precision Low Noise 5A Power Supply

Michael B. Anderson - Senior IC Design Engineer Sep 6th 2016
The LT6658-2.5V voltage reference has the specifications of a precision reference with dual outputs capable of 150mA and 50mA. This unprecedented combination of precision and power allows the unique ability to create a very precise high-current power supply with load regulation of less than 12ppm/A. Only a few additional components ...

Blog Post 

 

I2C Primer: What is I2C? (Part 1)

Hamza Salman Afzal - Applications Engineer Sep 2nd 2016
Introduction: The Inter-Integrated Circuit (I2C) bus is a two wire serial interface originally developed by the Phillips Corporation for use in consumer products. It is a bi-directional bus that is easily implemented in any IC process (NMOS, CMOS, bipolar) and allows for simple inter-IC communication. Connections are minimized ...

Blog Post 

 

Anti-Alias Filter for 24-bit ADC

Guy Hoover - Applications Engineer Aug 3rd 2016
For many ADC applications a simple RC filter at the buffer input will provide adequate anti-alias filtering. For applications that require a higher order filter an active filter is often used. The active component in that filter must have sufficient bandwidth, fast settling, low noise and low offset so that it doesn’t ...

Blog Post 

 

LTC6244 High Speed Peak Detector

Hassan Kelley - Field Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Aug 1st 2016
Introduction Peak detectors capture the extrema of the voltage signal at its input. A positive peak detector captures the most positive point of the input signal and a negative peak detector captures the most negative point of the input signal. Ideally the output of the peak detector circuit tracks or follows the input voltage ...

Blog Post Circuit LTspice 

 

Baseband Design Example for LTC5589/LTC5599 Low-Power IQ Modulator

Bruce Hemp - Applications Section Leader Jul 1st 2016
Introduction This basic low power modulator was described in the LT Journal Nov 2015 article. In this blog post, we will show how to: Use simulation to validate the filter design, and Reduce DC offsets by utilizing Differential Amplifiers for the baseband drive. Also shown are some miscellaneous tips to help complete ...

Blog Post Circuit LTspice 

 

LT6703 AC Line Overcurrent Indicator

Philip Lane - Field Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Scott Olson - Associate Engineer
Jun 4th 2016
Circuit Description This circuit design is to monitor the average current in an AC line-connected load and to illuminate an LED if it exceeds a specified level. µPower, Low Voltage Comparator with Reference The basis of this design is the LT6703-2 which combines a micropower, low voltage comparator with a 400mV reference ...

Blog Post Circuit LTspice 

 

How to Drive the LTC2387 (Part 1): Signal Applications to 5MHz that Require Low Inter-Modulation Distortion

Derek Redmayne - Staff Scientist May 13th 2016
The biggest challenge in driving a 15Msps, 18-bit ADC with an 8Vp-p input range is the lack of integrated amplifiers with adequate bandwidth, low noise, and the required output excursion. There are low-noise, high-BW amplifiers than can produce 2VPP. There are low speed amplifiers than can produce 8VPP. For low distortion beyond ...

Blog Post 

 

Common Questions About the LTC2668 Family of 16bit VOUT DACs

Mark Thoren - Staff Scientist
Chad Steward - Design Manager
Noe Quintero - Application Engineer
Apr 19th 2016
The LTC2668-16 packs 16, 16-bit high performance Digital to Analog converters (DACs) into a tiny, 6x6mm QFN package, with 8 and 4 channel versions in a 5x5 QFN, and 12-bit versions for lower resolution applications. A general purpose DAC such as this finds its way into a myriad of diverse applications, and tends to generate ...

Blog Post 

 

Audio Spectrum Analyzer with the Linduino

Noe Quintero - Application Engineer Apr 12th 2016
There are several methods for implementing a spectrum analyzer. I’ve been working with SAR ADC products for some time, and using the Fast Fourier Transform (FFT) for spectral analysis on a daily basis. Another common method for implementing a spectrum analyzer is called the swept-tuned receiver. This method involves mixing ...

Blog Post Linduino LTspice 

 

A New Era in Space Products - Radiation Tolerant

T.J. Fure - Product Marketing Manager
Gabino Alonso - Strategic Marketing Engineer
Mar 23rd 2016
Recent developments have made doing business in space ever more achievable to a broadening base of companies. A market previously consisting solely of major defense contractors and national governments has been disrupted by a growing list of commercial companies determined to deploy an enterprise beyond the confines of our terrestrial ...

Blog Post 

 

High-Voltage Amplifier Extends Coulomb Counter Range to +/-270V

Kris Lokere - Strategic Applications Manager Jan 22nd 2016
Introduction A coulomb counter can measure charge that flows into or out of a battery. Small, dedicated devices such as LTC2941 or LTC2943 can directly interface with low to medium battery voltages, up to about 20V. You can extend the input operating range of the measurement circuit by using a high-voltage amplifier as a level ...

Blog Post 

 

Parameters that Affect Comparator Propagation Delay Measurements

Kevin B. Scott - Senior Strategic Marketing Engineer Nov 4th 2015
One of the key specifications for a comparator is propagation delay - the amount of time it takes for a signal propagate from the comparator input to the output. Whether as a threshold detector in a battery powered application, or on a high speed signal processing board, the comparator's propagation delay is often the first ...

Blog Post 

 

Low Power, Precision Op Amp Simplifies Driving of MUXed ADCs

Guy Hoover - Applications Engineer Oct 2nd 2015
Design Note 1034: Introduction The high speed op amps required to buffer a modern 16‑/18-bit analog-to-digital converter (ADC) typically dissipate as much power as the ADC itself, often with a maximum offset spec of about 1mV, well beyond that of the ADC. If multiple multichannel ADCs are required, the power dissipation can ...

Blog Post 

 

Signal Conditioning for High Impedance Sensors

Glen Brisebois - Applications Engineer - Signal Conditioning Sep 22nd 2015
Abstract Dealing with high impedance sources and maintaining high impedance inputs without compromising reliability has its own set of challenges. This article offers qualitative and quantitative discussions of issues associated what high impedence circuits, what types of sensors are high impedance, and what devices are available ...

Blog Post 

 

Injection-Lock a Wien-Bridge Oscillator

Glen Brisebois - Applications Engineer - Signal Conditioning Sep 22nd 2015
I recently had the opportunity to investigate a new micropower 6-MHz LTC6255 op amp driving a 12-bit, 250k sample/sec LTC2361 ADC. I wanted to acquire the FFT of a pure sinusoid of about 5 kHz. The problem is that getting the FFT of a pure sinusoid requires, well, a pure sinusoid. Most programmable signal generators, however, ...

Blog Post 

 

Positive to Negative Converter with Variable Output Using LTC3630 and LT6015/LT6016

Philip Lane - Field Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Sep 1st 2015
There was a window of time in the 1950s and early ’60s when negative voltage rails were commonplace, when germanium PNP transistors were prevalent—like those used in an old “transistor radio”, now worth a fortune on Ebay. Nowadays, NPN transistors are more prevalent, since they basically work ...

Blog Post Circuit LTspice 

 

Paralleling Amplifiers Improves Signal-to-Noise Performance

Kevin B. Scott - Senior Strategic Marketing Engineer Jul 9th 2015
Dealing with low amplitude signals can be challenging.  In order to differentiate between the low level signal and the noise contributed by surrounding circuitry, we typically use gain to amplify the signal above the noise floor.  However, a standard amplifier configuration multiplies the input signal, the input noise, ...

Blog Post 

 

Micropower Op Amp Drives 8-Channel 18-Bit Simultaneous Sampling ADC without Compromising Accuracy or Breaking the Power Budget

Guy Hoover - Applications Engineer Jun 23rd 2015
Design Note 541: Introduction The op amps used to drive 18-bit analog-to-digital converters (ADCs) typically draw as much supply current as the ADC itself, often with a maximum offset spec that is well above that of the ADC. If multiple ADC channels are required, the power dissipation from these drivers quickly rises to unacceptable ...

Blog Post 

 

Sometimes You Need a Little Gain Part 2

Guy Hoover - Applications Engineer Apr 28th 2015
Introduction Part 1 of "Sometimes You Need a Little Gain" dealt with a pseudo-differential ADC driver with gains of one to ten. This time a fully differential ADC driver, again with gains of one to ten will be described. First a brief recap on the LTC2373-18 SAR ADC and a description of the LTC6237 op amp which will be ...

Blog Post 

 

Sometimes You Need a Little Gain - Part 1

Guy Hoover - Applications Engineer Apr 9th 2015
Introduction The LTC2373-18 is an 18-bit, 1Msps, 8-channel SAR ADC with an integrated high performance reference and programmable sequencer. The LTC2373-18 can be configured to accept both pseudo-differential (unipolar and bipolar) and fully differential input signals. For best performance, an op amp should ...

Blog Post 

 

Paralleling Amplifiers Increases Output Drive

Apr 1st 2015
There are several circuit techniques that increase the output drive capability of an amplifier. One method uses external bipolar transistors as a push-pull circuit to provide additional drive. Another method uses two different amplifiers in a composite amplfier configuration as detailed in Application Note 21 to leverage ...

Blog Post 

 

Avoid Amplifier Output Driver Saturation When Using pA Bias Current Amplifiers with High Source Impedance Sensors

Jon Munson - Applications Engineer
Kevin B. Scott - Senior Strategic Marketing Engineer
Mar 26th 2015
Need for Low Bias Current Amplfiers When taking sensor measurements, the type of sensor excitation used varies greatly; it can be a DC signal, an AC signal, a voltage source, a current source or a pulsed source to name a few. When using current source excitation or when using a high impedance sensor, the amplifier's bias current ...

Blog Post 

 

LT6703 μPower Supply Voltage Monitor with 2V Hysteresis

Mar 17th 2015
The LT6703 µPower, low voltage comparator and reference offers a single comparator and accurate reference in a 2mm × 2mm DFN package. The -3 version is has a non-inverting input. Although only one of its comparator inputs is accessible (the other is connected to a 400mV internal precision voltage reference) its size ...

Blog Post Circuit LTspice 

 

LT3753 9V-15V Input to 54V/3A Isolated Forward Converter

Randyco Prasetyo - Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Feb 26th 2015
The LT®3753 is a primary side, current-mode PWM controller optimized for an active clamp forward converter topology. It features a programmable volt-second clamp that provides a duty cycle guardrail to limit primary switch reset voltage and prevent transformer saturation during load transients. The LT3753 also features ...

Blog Post Circuit 

 

Understanding Power Monitor Accuracy

Mark Thoren - Staff Scientist
Hamza Salman Afzal - Applications Engineer
Feb 20th 2015
Measurement of a system’s power consumption during a final factory test (before deployment into the field) is a prudent part of a test program for any product. But there is an increasing emphasis to bring this functionality into the product itself for “run-time” monitoring of power, current, supply voltage, ...

Blog Post 

 

Transimpedance Amplifier Noise Considerations

Feb 18th 2015
The LTC6268 and LTC6269 is a single/dual 500MHz FET-input operational amplifier with extremely low input bias current and low input capacitance. It also features low input referred current noise and voltage noise making it an ideal choice for high speed transimpedance amplifiers, CCD output buffers, and high-impedance ...

Blog Post 

 

Increase Amplifier Output Drive Using a Push-Pull Amplifier Stage

Feb 17th 2015
Many portable circuits require precision measurement capability along with low power operation to minimize current and battery drain. When searching for an amplifer with these requirements, it may be relatively easy to meet the low power and precision requirements, but the drive current may not be adequate for these low power ...

Blog Post 

 

LT8310/LT1431 81W Isolated Forward Converter with Opto Feedback; VIN = 12V/24V, VOUT = 54V@1.5A

George Qian - Senior Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Jan 30th 2015
The LT8310 is a constant-frequency resonant reset forward converter controller with a low side N-channel MOSFET gate driver. The LT8310 has a wide input voltage range from 6V to 100V. Its switching frequency can be programed from 100kHz to 500kHz to optimize efficiency, performance or external component size. The LT8310's protection ...

Blog Post Circuit LTspice 

 

Loop Gain and its Effect on Analog Control Systems

Simon Bramble - Field Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Jan 26th 2015
Abstract This article brings together the ideas of open loop gain, closed loop gain, gain and phase margin, minimum gain stability and shows how these parameters are interrelated in a feedback system. It examines loop gain in terms of a theoretical control system as well as practical electronic circuits, including linear regulators. Introduction Bob ...

Blog Post LTspice 

 

Precision Op Amp Enables Fast Multiplexing at Low Power

Kris Lokere - Strategic Applications Manager Jan 23rd 2015
Introduction If you are designing a system that measures a number of analog voltages, but not all at the same time, you can reduce downstream circuitry by multiplexing the measurements into a single output signal, then serially process and digitize the original voltage levels using shared components. The benefit is that the ...

Blog Post 

 

Robust High Voltage Over-The-Top Op Amps Maintain High Input Impedance with Inputs Driven Apart or When Powered Down

Glen Brisebois - Applications Engineer - Signal Conditioning Nov 5th 2014
Introduction Linear Technology’s Over-The-Top op amps have an input stage topology that allows them to operate closed loop well above the positive supply rail. The inputs remain high impedance when split apart in voltage and also when shut down or with complete loss of power supply. They are indispensable in robust ...

Blog Post 

 

Locating Shorts on Power Planes of Multi-Layer PCBs

Bob Smith - Sr Module Design Engineer Aug 7th 2014
Occasionally multi-layer PCBs arrive with power to ground shorts that are difficult to locate. Usually the response to questions about finding these shorts is to just “Hook it up to a 12V battery and find out where it smokes.” While this may work, it’s usually not desirable since the board will probably be ...

Blog Post 

 

Product How-to: Precise Wireless Temperature Sensor Powers Itself

Jun 13th 2014
In case you missed it, LTC’s Kris Lokere recently wrote an article for EDN describing a circuit combining Dust, Energy Harvesting, and precision temperature sensing. Specifically, it describes a reference circuit showcasing: Dust Networks wireless - LTP5901-IPM SmartMesh IP Mote Energy Harvesting - LTC3330 Nanopower ...

Blog Post 

 

LTspice: SAR ADC Driver Interface

Kris Lokere - Strategic Applications Manager Apr 3rd 2014
High-performance SAR ADCs can offer amazing dynamic range and linearity at faster and faster sample rates. But how do you design the amplifier and interface at the analog inputs? LTspice IV can help. This video shows how to use LTspice to simulate the analog input interface of high-performance SAR ADCs. We will look at charge ...

Blog Post Video LTspice 

 

Driver for 14-Bit, 4.5Msps ADC Operates Over a Wide Gain Range

Guy Hoover - Applications Engineer Apr 3rd 2014
Introduction The LTC2314-14 is a 14-bit, 4.5Msps, serial output ADC with an integrated high performance reference. The single-ended input of the LTC2314-14 is easy to drive and in many instances does not require a buffer. A driver, such as the LT6236 op amp, may be required for a signal that is small or has high output impedance. ...

Blog Post 

 

Digital Gain Compression (DGC) for SAR ADCs

Mar 11th 2014
The LTC2378-20 offers a digital gain compression (DGC) feature which defines the full-scale input swing to be between 10% and 90% of the ±VREF analog input range. This feature allows the SAR ADC driver to be powered off of a single positive supply since each input swings between 0.5V and 4.5V as shown in the figure below. Needing ...

Blog Post 

 

Internal Dither Improves High Speed ADC SFDR Performance

Mar 3rd 2014
Click here for a complete list of analog to digital converters with internal dither The LTC2208 is a 16-bit ADC with a very linear transfer function; however, at low input levels even slight imperfections in the transfer function will result in unwanted tones. Small errors in the transfer function are usually a result of ADC ...

Blog Post 

 

DC Accurate Driver for the LTC2377-20 Achieves 2ppm Linearity

Guy Hoover - Applications Engineer Jan 10th 2014
Introduction As resolution and sample rates continue to rise for analog-to-digital converters (ADCs), the driver circuitry for the ADC analog input, not the ADC itself, has increasingly become the limiting factor in determining overall circuit accuracy. First, the driver circuitry must buffer the input signal and provide gain. ...

Blog Post 

 

Generating a ±10.24V True Bipolar Input for an 18-Bit, 1Msps SAR ADC

Guy Hoover - Applications Engineer Dec 17th 2013
Introduction The LTC2338 is an 18-bit fully differential SAR ADC that is remarkably easy to drive. This 1Msps ADC operates from a single 5V supply and achieves ±4LSB INL maximum with –111dB THD and 100dB SNR. Its fully differential ±20.48V true bipolar input range minimizes the need for range scaling, and ...

Blog Post 

 

LTspice: Stability of Op Amp Circuits

Kris Lokere - Strategic Applications Manager Nov 6th 2013
We all know that feedback circuits can oscillate. We may even know some tricks of how to fix it. But wouldn’t it be nice if our simulation tool could show us exactly what is happening, and why? This video illustrates how to use the .AC analysis to look at open loop gain and phase of operational amplifier feedback circuits ...

Blog Post Video LTspice 

 

Layout For Precision Op Amps

Glen Brisebois - Applications Engineer - Signal Conditioning
Jeremy Wong - Design Engineer
Sep 13th 2013
The incredible offset and drift performance of modern precision op amps can easily be degraded by poor PCB layout techniques.  By utilizing a few simple layout techniques, the performance of the IC can be maintained. Thermocouple Effects In order to achieve accuracy on the microvolt level, thermocouple effects must ...

Blog Post 

 

Can You Use the Voltage Reference to Power Your ADC Driver?

Kris Lokere - Strategic Applications Manager Jul 11th 2013
Linear Technology’s family of 16-, 18-, and 20-Bit SAR ADCs (LTC2378-20 family) operates with an external reference voltage of up to 5V. The largest input voltage that you are then supposed to put on each ADC input pin is equal to that 5V reference voltage. It seems logical to use an opamp on a 5V supply with rail-to-rail ...

Blog Post 

 

High Voltage CMOS Amplifier Enables High Impedance Sensing with a Single IC

Jon Munson - Applications Engineer Apr 1st 2013
Introduction Accurately measuring voltages requires minimizing the impact of the instrument connection to the tested circuit. Typical digital voltmeters (DVMs) use 10M resistor networks to keep loading effects to an inconspicuous level, but even this can introduce significant error, particularly in higher voltage circuits that ...

Blog Post 

 

Low Noise Single Supply Photodiode Amplifier

Glen Brisebois - Applications Engineer - Signal Conditioning Feb 4th 2013
Low Noise Single Supply Photodiode Amplifier Figure 1 shows the LTC6252 applied as a high performance transimpedance amplifier for a photodiode. A low noise JFET acts as a current buffer, with R2 and R3 imposing a low frequency gain of approximately 1. Transimpedance gain is set by feedback resistor R1 to 1MΩ. R4 and ...

Blog Post 

 

Matched Resistor Networks for Precision Amplifier Applications

Tyler Hutchison - Signal Conditioning Design Engineer May 1st 2012
Introduction Some ideal op amp configurations assume that the feedback resistors exhibit perfect matching. In practice, resistor non-idealities can affect various circuit parameters such as common mode rejection ratio (CMRR), harmonic distortion and stability. For instance, as shown in Figure 1, a single-ended amplifier configured ...

Blog Post