1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

Solutions Search - Hot Swap Controllers

LTspice Models of ISO 7637-2 & ISO 16750-2 Transients

Dan Eddleman - Senior Applications Engineer Apr 5th 2017
Introduction Simulating the ISO 7637-2 and ISO 16750-2 transients early in the design phase of an automotive product can pinpoint issues that would otherwise come to light during electromagnetic compatibility (EMC) testing. If a product fails EMC testing, hardware modifications are required, project schedules suffer, and extra ...

Blog Post LTspice 

 

LTspice SOAtherm Support for PCB and Heat Sink Thermal Models

Dan Eddleman - Senior Applications Engineer Sep 1st 2016
The SOAtherm model distributed with LTspice software and simplifies Hot Swap and Surge Stopper designs by verifying directly within a circuit simulation that a particular MOSFET’s Safe Operating Area (SOA) is not exceeded. This article assumes a basic understanding of the SOAtherm model. If you are not familiar with SOAtherm, ...

Blog Post LTspice 

 

LTspice: Using Time-Dependent Exponential Sources to Model Transients

Mitchell Lee - Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
May 15th 2016
When working with Surge Stoppers or Hot Swap Controllers, occasionally there is a need to simulate a circuit's behavior with a specified voltage or current transient. These transients are usually modeled using a double exponential waveform characterized by a peak voltage, a rise time (usually 10%–90%), a fall time to 50% ...

Blog Post LTspice 

 

Achieving Low On-Resistance with Guaranteed SOA in High Current Hot Swap Applications

Dan Eddleman - Senior Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Jul 29th 2015
Introduction The requirement for live insertion and removal in high current backplane applications demands MOSFETs that exhibit both low on-resistance during steady state operation and high Safe Operating Area (SOA) for transient conditions. Often, modern MOSFETs optimized for low on-resistance are unsuitable for high SOA Hot ...

Blog Post Circuit LTspice 

 

LTC4218 12V / 100A Hot Swap Design for Server Farms

Dan Eddleman - Senior Applications Engineer Mar 18th 2015
Cultivate reliability on the farm with a properly designed Hot Swap circuit. Introduction As data centers servicing the cloud grow in speed and capacity, backplane supplies are called on to deliver currents that push the performance boundaries of Hot Swap™ components. Hot Swap solutions allow boards to be inserted and ...

Blog Post Circuit LTspice 

 

LTC4226 Parallel MOSFETs in Hot Swap Circuits

Dan Eddleman - Senior Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Mar 13th 2015
The Good, the Bad, and the Ugly Introduction While it is often desirable, and sometimes absolutely critical, to use multiple parallel MOSFETs in Hot Swap™ circuits, careful analysis of Safe Operating Area (SOA) is essential. Each additional parallel MOSFET added to a circuit improves the voltage drop, power loss, and ...

Blog Post Circuit LTspice 

 

Understanding Power Monitor Accuracy

Mark Thoren - Staff Scientist
Hamza Salman Afzal - Applications Engineer
Feb 20th 2015
Measurement of a system’s power consumption during a final factory test (before deployment into the field) is a prudent part of a test program for any product. But there is an increasing emphasis to bring this functionality into the product itself for “run-time” monitoring of power, current, supply voltage, ...

Blog Post 

 

Surge Stoppers Ease MIL-STD-1275D Compliance

Dan Eddleman - Senior Applications Engineer Nov 25th 2014
Introduction A military vehicle is a tough environment for electronics, where the potential for damaging power supply fluctuations is high. U.S. Department of Defense MILSTD- 1275D sets down the requirements for electronics when powered from a 28V supply, ensuring that electronics survive in the field. MIL-STD-1275D compliance ...

Blog Post 

 

LTspice: SOAtherm Tutorial

Dan Eddleman - Senior Applications Engineer Oct 8th 2014
Verifying that a Hot Swap design does not exceed the capabilities of a MOSFET is a challenge at high power levels. Fortunately, thermal behavior and SOA may be modeled in circuit simulators such as LTspice IV® . The SOAtherm-NMOS symbol included in LTspice contains a collection of MOSFET thermal models developed by Linear ...

Blog Post Video LTspice 

 

LTspice: Modeling Safe Operating Area Behavior of N-channel MOSFETs

Dan Eddleman - Senior Applications Engineer
Gabino Alonso - Strategic Marketing Engineer
Aug 22nd 2014
Introduction Often the most challenging aspect of Hot Swap™ circuit design is verifying that a MOSFET’s Safe Operating Area (SOA) is not exceeded. The SOAtherm tool distributed with LTspice IV® simplifies this task, allowing a circuit designer to immediately evaluate the SOA requirements of an application and ...

Blog Post LTspice