1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

Solutions Search - Extended Temperature (H & MP) Data Converters

Low Frequency Noise Analysis for Sensor Signal Chains

Noe Quintero - Application Engineer Jun 7th 2017
Introduction High-resolution, low frequency measurements are easy to implement and perform. All that is needed is an in-depth understanding of everything in the signal chain and a consideration of every aspect of every component. In all seriousness, some considerations are needed in order to get the maximum system performance ...

Blog Post 

 

Testing Data Converters with the Arrow / Altera SoCkit FPGA Board

Mark Thoren - Staff Scientist Jan 3rd 2017
Introduction This blog describes how Linear Technology is using the SoCkit Cyclone V SoC FPGA board from Arrow Electronics as a system for evaluating medium- speed data converters: ADCs, DACs with sample rates less than 100Msps. LTC manufactures several evaluation boards for this purpose, including the DC718, DC890, and ...

Blog Post Linduino LinearLabTools 

 

Consequences of Not Following the Data Sheet Bypass Recommendation

Guy Hoover - Applications Engineer Aug 8th 2016
I occasionally get customers who ask me to review their ADC schematics and often I will see that the values for the bypass capacitors for Vdd and Vref are smaller than the data sheet recommendations. Here is an experiment I would like to share to show why it is important to use the suggested bypassing values. The circuit of ...

Blog Post 

 

A New Era in Space Products - Radiation Tolerant

T.J. Fure - Product Marketing Manager
Gabino Alonso - Strategic Marketing Engineer
Mar 23rd 2016
Recent developments have made doing business in space ever more achievable to a broadening base of companies. A market previously consisting solely of major defense contractors and national governments has been disrupted by a growing list of commercial companies determined to deploy an enterprise beyond the confines of our terrestrial ...

Blog Post 

 

Low Power, Precision Op Amp Simplifies Driving of MUXed ADCs

Guy Hoover - Applications Engineer Oct 2nd 2015
Design Note 1034: Introduction The high speed op amps required to buffer a modern 16‑/18-bit analog-to-digital converter (ADC) typically dissipate as much power as the ADC itself, often with a maximum offset spec of about 1mV, well beyond that of the ADC. If multiple multichannel ADCs are required, the power dissipation can ...

Blog Post 

 

Injection-Lock a Wien-Bridge Oscillator

Glen Brisebois - Applications Engineer - Signal Conditioning Sep 22nd 2015
I recently had the opportunity to investigate a new micropower 6-MHz LTC6255 op amp driving a 12-bit, 250k sample/sec LTC2361 ADC. I wanted to acquire the FFT of a pure sinusoid of about 5 kHz. The problem is that getting the FFT of a pure sinusoid requires, well, a pure sinusoid. Most programmable signal generators, however, ...

Blog Post 

 

Micropower Op Amp Drives 8-Channel 18-Bit Simultaneous Sampling ADC without Compromising Accuracy or Breaking the Power Budget

Guy Hoover - Applications Engineer Jun 23rd 2015
Design Note 541: Introduction The op amps used to drive 18-bit analog-to-digital converters (ADCs) typically draw as much supply current as the ADC itself, often with a maximum offset spec that is well above that of the ADC. If multiple ADC channels are required, the power dissipation from these drivers quickly rises to unacceptable ...

Blog Post 

 

Sometimes You Need a Little Gain Part 2

Guy Hoover - Applications Engineer Apr 28th 2015
Introduction Part 1 of "Sometimes You Need a Little Gain" dealt with a pseudo-differential ADC driver with gains of one to ten. This time a fully differential ADC driver, again with gains of one to ten will be described. First a brief recap on the LTC2373-18 SAR ADC and a description of the LTC6237 op amp which will be ...

Blog Post 

 

Sometimes You Need a Little Gain - Part 1

Guy Hoover - Applications Engineer Apr 9th 2015
Introduction The LTC2373-18 is an 18-bit, 1Msps, 8-channel SAR ADC with an integrated high performance reference and programmable sequencer. The LTC2373-18 can be configured to accept both pseudo-differential (unipolar and bipolar) and fully differential input signals. For best performance, an op amp should ...

Blog Post 

 

Multiple LTC2315-12 ADCs Share SPI Bus

Guy Hoover - Applications Engineer Mar 18th 2015
The data sheet doesn’t always show everything you need to know about using a part. For example, a common application when using multiple serial ADCs is to share the clock and data output lines to simplify the interface to the processor/ FPGA. The data sheet for the LTC2315-12 12-bit 5Msps, SPI compatible ADC with an integrated ...

Blog Post 

 

Driving the LTC2323-16 with +/-10V Input Signals

Jul 22nd 2014
Here is a driver circuit for the LTC2323-16 dual 16-bit differential input ADC. This circuit accepts a single-ended +/-10V signal and converts it to a differential +/-4.096V signal which is optimal for the LTC2323-16 using a 5V supply. The driver circuit is shown in Figure 1. This circuit has an SNR of 82dBFS (Add full ...

Blog Post PScope 

 

LTspice: SAR ADC Driver Interface

Kris Lokere - Strategic Applications Manager Apr 3rd 2014
High-performance SAR ADCs can offer amazing dynamic range and linearity at faster and faster sample rates. But how do you design the amplifier and interface at the analog inputs? LTspice IV can help. This video shows how to use LTspice to simulate the analog input interface of high-performance SAR ADCs. We will look at charge ...

Blog Post Video LTspice 

 

Driver for 14-Bit, 4.5Msps ADC Operates Over a Wide Gain Range

Guy Hoover - Applications Engineer Apr 3rd 2014
Introduction The LTC2314-14 is a 14-bit, 4.5Msps, serial output ADC with an integrated high performance reference. The single-ended input of the LTC2314-14 is easy to drive and in many instances does not require a buffer. A driver, such as the LT6236 op amp, may be required for a signal that is small or has high output impedance. ...

Blog Post 

 

A Low Jitter Clock is Required to Evaluate High Resolution ADCs

Guy Hoover - Applications Engineer Mar 3rd 2014
“How bad can the ADC clock be and still get good SNR results?” I’ve never been asked this question directly by a customer but I do periodically get asked about using clock sources that are not appropriate for high resolution ADCs. Usually it involves a function generator which can have jitter up to 1nsRMS. ...

Blog Post PScope 

 

Generating a ±10.24V True Bipolar Input for an 18-Bit, 1Msps SAR ADC

Guy Hoover - Applications Engineer Dec 17th 2013
Introduction The LTC2338 is an 18-bit fully differential SAR ADC that is remarkably easy to drive. This 1Msps ADC operates from a single 5V supply and achieves ±4LSB INL maximum with –111dB THD and 100dB SNR. Its fully differential ±20.48V true bipolar input range minimizes the need for range scaling, and ...

Blog Post 

 

Short Ground Leads Make Better Scope Photos

Guy Hoover - Applications Engineer Nov 6th 2013
I often ask customers to send me oscilloscope photos showing the ADC interface timing of their circuits. Occasionally, what I get back is a waveform with large amplitude ringing or even something that resembles a sine wave for what should be a relatively clean square wave. When asked how the scope probe was grounded, they will ...

Blog Post