1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

LTC6258 Low Power Squarewave - Sinewave Oscillator

Figure 4a. Low Power Squarewave - Sinewave Oscillator

A low power sine wave generator can be derived by driving a square wave into the bandpass filter. A complete schematic is shown in Figure 4a. The LTC6992-1 easily configures as a 50% duty cycle 10kHz square wave, and can drive the relatively benign loading seen in the bandpass filter.

Figures 4b and 4c show the LTC6992-1 output and bandpass filter output. THD of the sine wave is –30.5 dBc. Note, even harmonics that appear in the distortion products of the filtered output already appear in the source square wave.

Figure 4b. Low Power Sine Generator

Figure 4c. FFT


The LTC®6258/LTC6259/LTC6260 are single/dual/quad operational amplifiers with low noise, low power, low supply voltage, and rail-to-rail inputs and outputs. They are unity gain stable with or without capacitive loads. They feature 1.3MHz gain-bandwidth product, 0.24V/μs slew rate while consuming only 20μA of supply current per amplifier operating on supply voltages ranging from 1.8V to 5.25V. The combination of low supply current, low supply voltage, high gain bandwidth product and low noise makes the LTC6258 family unique among rail-to-rail input/output op amps with similar supply current. These operational amplifiers are ideal for power efficient applications.




LTspice® software is a powerful, fast and free simulation tool, schematic capture and waveform viewer with enhancements and models for improving the simulation of switching regulators. Click here to download LTspice

To launch a ready to run LTspice demonstration circuit for this part:

  • Step 1: If you have not installed LTspice on this computer, download and install LTspice
  • Step 2: Once LTspice is installed, click on the link(s) below to launch the simulation
  • Step 3: If LTspice does not automatically open after clicking the link above, you can instead run the simulation by right clicking on the link and selecting "Save Target As." After saving the file to your computer, start LTspice and open the demonstration circuit by selecting 'Open' from the 'File' menu

To explore other ready to run LTspice demonstration circuits, please visit our Demo Circuits Collection.

View More Oscillators Solutions

View All - List View