1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

LT8302 42VIN Micropower No-Opto Isolated Flyback Converter with 65V/3.6A Switch - Video Product Brief

Bruce Haug - Product Marketing Engineer Dec 17th 2013

The LT®8302 is a monolithic micropower isolated flyback converter. By sampling the isolated output voltage directly from the primary-side flyback waveform, the part requires no third winding or opto-isolator for regulation. The output voltage is programmed with two external resistors and a third optional temperature compensation resistor. Boundary mode operation provides a small magnetic solution with excellent load regulation. Low ripple Burst Mode operation maintains high efficiency at light load while minimizing the output voltage ripple. A 3.6A, 65V DMOS power switch is integrated along with all the high voltage circuitry and control logic into a thermally enhanced 8-lead SO package.

The LT8302 operates from an input voltage range of 2.8V to 42V and delivers up to 18W of isolated output power. The high level of integration and the use of boundary and low ripple burst modes result in a simple to use, low component count, and high efficiency application solution for isolated power delivery.

LT8302 PR Photo

 


Software

LTspice

LTspice® software is a powerful, fast and free simulation tool, schematic capture and waveform viewer with enhancements and models for improving the simulation of switching regulators. Click here to download LTspice

To launch a ready to run LTspice demonstration circuit for this part:

  • Step 1: If you have not installed LTspice on this computer, download and install LTspice
  • Step 2: Once LTspice is installed, click on the link(s) below to launch the simulation
  • Step 3: If LTspice does not automatically open after clicking the link above, you can instead run the simulation by right clicking on the link and selecting "Save Target As." After saving the file to your computer, start LTspice and open the demonstration circuit by selecting 'Open' from the 'File' menu

To explore other ready to run LTspice demonstration circuits, please visit our Demo Circuits Collection.