LTC2655 - Quad I2C 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Features
- Integrated Reference 10ppm/°C Max
- Maximum INL Error: ±4LSB at 16 Bits
- Guaranteed Monotonic Over Temperature
- Selectable Internal or External Reference
- 2.7V to 5.5V Supply Range (LTC2655-L)
- Integrated Reference Buffers
- Ultralow Crosstalk Between DACs (<1nV•s)
- Power-On-Reset to Zero-Scale/Mid-Scale
- Asynchronous DAC Update Pin
- Tiny 20-Lead 4mm × 4mm QFN and 16-Lead Narrow SSOP packages
Typical Application
Description
The LTC2655 is a family of Quad I2C 16-/12-Bit Rail-to- Rail DACs with integrated 10ppm/°C max reference. The DACs have built-in high performance, rail-to-rail, output buffers and are guaranteed monotonic. The LTC2655-L has a full-scale output of 2.5V with the integrated reference and operates from a single 2.7V to 5.5V supply. The LTC2655-H has a full-scale output of 4.096V with the integrated reference and operates from a 4.5V to 5.5V supply. Each DAC can also operate with an external reference, which sets the full-scale output to 2 times the external reference voltage.
The parts use the 2-wire I2C compatible serial interface. The LTC2655 operates in both the standard mode (maximum clock rate of 100kHz) and the fast mode (maximum clock rate of 400kHz). The LTC2655 incorporates a power-on reset circuit that is controlled by the PORSEL pin. If PORSEL is tied to GND the DACs power-on reset to zero-scale. If PORSEL is tied to VCC, the DACs power-on reset to mid-scale.
Packaging
CAD Symbols and Footprints: The downloadable Zip file below contains the schematic symbol and PCB footprints.
For complete and up to date package information and drawings, please refer to our packaging page
| Part Number | Package | Code | Temp | Package Drawing |
RoHS |
|---|---|---|---|---|---|
| LTC2655BCGN-H16#PBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2655BCGN-H16#TRPBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2655BCGN-L16#PBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2655BCGN-L16#TRPBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2655BCUF-H16#PBF | 4x4 QFN-20 | UF | C | 05-08-1710 | Yes |
| LTC2655BCUF-H16#TRPBF | 4x4 QFN-20 | UF | C | 05-08-1710 | Yes |
| LTC2655BCUF-L16#PBF | 4x4 QFN-20 | UF | C | 05-08-1710 | Yes |
| LTC2655BCUF-L16#TRPBF | 4x4 QFN-20 | UF | C | 05-08-1710 | Yes |
| LTC2655BIGN-H16#PBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2655BIGN-H16#TRPBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2655BIGN-L16#PBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2655BIGN-L16#TRPBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2655BIUF-H16#PBF | 4x4 QFN-20 | UF | I | 05-08-1710 | Yes |
| LTC2655BIUF-H16#TRPBF | 4x4 QFN-20 | UF | I | 05-08-1710 | Yes |
| LTC2655BIUF-L16#PBF | 4x4 QFN-20 | UF | I | 05-08-1710 | Yes |
| LTC2655BIUF-L16#TRPBF | 4x4 QFN-20 | UF | I | 05-08-1710 | Yes |
| LTC2655CGN-H12#PBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2655CGN-H12#TRPBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2655CGN-L12#PBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2655CGN-L12#TRPBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2655CUF-H12#PBF | 4x4 QFN-20 | UF | C | 05-08-1710 | Yes |
| LTC2655CUF-H12#TRPBF | 4x4 QFN-20 | UF | C | 05-08-1710 | Yes |
| LTC2655CUF-L12#PBF | 4x4 QFN-20 | UF | C | 05-08-1710 | Yes |
| LTC2655CUF-L12#TRPBF | 4x4 QFN-20 | UF | C | 05-08-1710 | Yes |
| LTC2655IGN-H12#PBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2655IGN-H12#TRPBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2655IGN-L12#PBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2655IGN-L12#TRPBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2655IUF-H12#PBF | 4x4 QFN-20 | UF | I | 05-08-1710 | Yes |
| LTC2655IUF-H12#TRPBF | 4x4 QFN-20 | UF | I | 05-08-1710 | Yes |
| LTC2655IUF-L12#PBF | 4x4 QFN-20 | UF | I | 05-08-1710 | Yes |
| LTC2655IUF-L12#TRPBF | 4x4 QFN-20 | UF | I | 05-08-1710 | Yes |
Order Info
- Part numbers ending in PBF are lead free. Solder plated terminal finish (SnPb) versions are non-standard and special terms and conditions and pricing applies if available. Please contact LTC marketing for information.
- Part numbers containing TR or TRM are shipped in tape and reel or 500 unit mini tape and reel, respectively
- Please refer to our general ordering information or the product datasheet for more details
Package Variations and Pricing
sales office or authorized distributor.Demo Boards
Linear Technology offers many demo boards free of charge to qualified customers. Contact your local sales office or distributor to inquire about a demo board. Certain demo boards are also available for sale via credit card on this website. Demo boards are for evaluation purposes only. It remains the customer’s responsibility to verify proper and reliable operation in the actual end application.| Part Number | Description | Price | Documentation |
|---|---|---|---|
| DC1703A-A | LTC2655-L16 Demo Board | Quad I2C 16-bit Voltage Output DAC with 1.25V Reference, req DC2026 | $75.00 | |
| DC1703A-B | LTC2655-H16 Demo Board | Quad I2C 16-bit Voltage Output DAC with 2.048V Reference, req DC2026 | $75.00 | |
| DC1703A-C | LTC2655-L12 Demo Board | Quad I2C 12-bit Voltage Output DAC with 1.25V Reference, req DC2026 | $75.00 | |
| DC1703A-D | LTC2655-H12 Demo Board | Quad I2C 12-bit Voltage Output DAC with 2.048V Reference, req DC2026 | $75.00 | |
| Buy Now | |||
Companion Boards
| Part Number | Description | Price | Documentation |
|---|---|---|---|
| DC2026C | Linduino One Isolated USB Demo Board: An Arduino- and QuikEval-Compatible Code Development Platform | $75.00 | |
| Buy Now | |||
Applications
- Mobile Communications
- Process Control and Industrial Automation
- Instrumentation
- Automatic Test Equipment
- Automotive
People Who Viewed This Product Also Viewed
- LTC6655 - 0.25ppm Noise, Low Drift Precision References
- LT3080 - Adjustable 1.1A Single Resistor Low Dropout Regulator
- LT5400 - Quad Matched Resistor Network
- LTM2883 - SPI/Digital or I2C μModule Isolator with Adjustable ±12.5V and 5V Regulated Power
- LT1761 - 100mA, Low Noise, LDO Micropower Regulators in TSOT-23
- LT1028 - Ultra Low Noise Precision High Speed Op Amps
- LT1763 - 500mA, Low Noise, LDO Micropower Regulators
- LT4320/LT4320-1 - Ideal Diode Bridge Controller
- LT8705 - 80V VIN and VOUT Synchronous 4-Switch Buck- Boost DC/DC Controller
- LTC2440 - 24-Bit High Speed Differential Delta Sigma ADC with Selectable Speed/Resolution
Product Notifications
Please login to your MyLinear account for notifications of datasheet updates, new document releases and LTspice model announcements for your favorite products. If you do not have a MyLinear account you may Sign Up Now.
Forgot your password? Click here.
Need help? Email mylinear@linear.com with questions and comments.
Design Tools
Linduino
Linduino is an Arduino compatible platform for developing and distributing firmware libraries and code for SPI and I²C-compatible integrated circuits. The Linduino One board interfaces to more than 300 QuikEval demonstration cards, supporting a variety of product types including analog-to-digital converters (ADCs), digital-to-analog converters (DACs), power monitors, and more. Firmware libraries for individual devices are written in C and designed to be portable to a wide variety of processors and microcontrollers. Each library has a demonstration program that can be uploaded to the Linduino One platform to allow the circuit and software to be quickly and easily verified.
Code
Linduino is Linear Technology's Arduino compatible system for developing and distributing firmware libraries and example code for Linear Technology’s integrated circuits. The code below can be downloaded or copied and pasted into your project. Please visit the Linduino Home Page for demo board, manual and setup information.
This part is Code Supported: There is example code available for this part. The code below may rely on other drivers available in the full library.
Download LTC2655 - DC1703A Linduino .INO File
/*!
Linear Technology DC1703A Demonstration Board.
LTC2655: Quad I2C 16-/12-Bit Rail-to-Rail DACs with 10ppm/C Max Reference.
@verbatim
NOTES
Setup:
Set the terminal baud rate to 115200 and select the newline terminator.
The program displays calculated voltages which are based on the voltage
of the reference used, be it internal or external. A precision voltmeter
is needed to verify the actual measured voltages against the calculated
voltage displayed. If an external reference is used, a precision voltage
source is required to apply the external reference voltage. A precision
voltmeter is also required to measure the external reference voltage.
No external power supply is required. Any assembly option may be used:
DC1703A-A, DC1703A-B, DC1703A-C, DC1703A-D.
Explanation of Commands:
1- Select DAC: Select one of four DACs to test: A, B, C, D.
2- Write to DAC input register: Value is stored in the DAC for updating
later, allowing multiple channels to be updated at once, either
through a software "Update All" command or by asserting the LDAC# pin.
User will be prompted to enter either a code in hex or decimal, or a
voltage. If a voltage is entered, a code will be calculated based on
the active scaling and reference parameters - ideal values if no
calibration was ever stored.
3- Write and Update: Similar to item 1, but DAC is updated immediately.
4- Update DAC: Copies the value from the input register into the DAC
Register. Note that a "write and update" command writes the code to
BOTH the input register and DAC register, so subsequent "update" commands
will simply re-copy the same data (no change in output).
5- Power Down DAC: Disable DAC output. Power supply current is reduced. DAC
code present in DAC registers at time of shutdown are preserved.
6- Set reference mode, either internal or external: Selecting external mode
prompts for the external refernce voltage, which is used directly if no
individual DAC calibration is stored. The selection and entered volgage
are stored to EEPROM so it is persisent across reset / power cycles.
7- Calibrate DAC: Use a precision voltmeter to obtain and enter VOUT readings
taken with different DAC codes. Set reference mode FIRST, as values are stored
separately for internal and external reference mode. Entries are used to
calculate the closest code to send to the DAC to achieve an entered voltage.
8- Enable / Disable calibration: Switch between stored calibration values and
defaults. Calibration parameters are stored separately for internal and
external reference modes. Ideal calibration will be used if the calibration
parameter valid key is not set.
USER INPUT DATA FORMAT:
decimal : 1024
hex : 0x400
octal : 02000 (leading 0 "zero")
binary : B10000000000
float : 1024.0
@endverbatim
http://www.linear.com/product/LTC2655
http://www.linear.com/product/LTC2655#demoboards
REVISION HISTORY
$Revision: 1863 $
$Date: 2013-08-13 10:25:48 -0700 (Tue, 13 Aug 2013) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC2655
*/
#include <Arduino.h>
#include <stdint.h>
#include "Linduino.h"
#include "LT_SPI.h"
#include "UserInterface.h"
#include "LT_I2C.h"
#include "QuikEval_EEPROM.h"
#include "LTC2655.h"
#include <Wire.h>
#include <SPI.h>
//! Calibration associated with internal reference.
//! This value is stored in EEPROM_CAL address of QuikEval EEPROM to indicate that a calibration occurred using the internal reference.
#define EEPROM_CAL_KEY_INT 0x5678
//! Calibration associated with external reference.
//! This value is stored in EEPROM_CAL address of QuikEval EEPROM to indicate that a calibration occurred using the external reference.
#define EEPROM_CAL_KEY_EXT 0x9ABC //!< Calibration associated with external reference. (Stored in EEPROM_CAL address of QuikEval EEPROM).
// DAC Reference State
// Could have been 0 or 1. This allows you to use the
// variable "reference_mode" as the command argument to a write
#define REF_INTERNAL LTC2655_CMD_INTERNAL_REFERENCE //!< Stored reference state is Internal
#define REF_EXTERNAL LTC2655_CMD_EXTERNAL_REFERENCE //!< Stored reference state is External
// EEPROM memory locations
#define STORED_REF_STATE_BASE EEPROM_CAL_STATUS_ADDRESS //!< Base address of the stored reference state
#define INT_CAL_VALID_BASE STORED_REF_STATE_BASE + 2 //!< Base address of the "internal ref calibration valid" flag
#define INT_CAL_PARAMS_BASE INT_CAL_VALID_BASE + 2 //!< Base address of the internal ref calibration parameters
#define EXT_CAL_VALID_BASE INT_CAL_PARAMS_BASE + 32 //!< Base address of the "external ref calibration valid" flag
#define EXT_CAL_PARAMS_BASE EXT_CAL_VALID_BASE + 2 //!< Base address of the external ref calibration parameters
#define EXT_REF_V_BASE EXT_CAL_PARAMS_BASE + 32 //!< Base address of the stored external reference voltage
// Function Declaration
int8_t restore_calibration(); // Read the DAC calibration from EEPROM, Return 1 if successful, 0 if not
void store_calibration(); // Store the DAC calibration to the EEPROM
void print_title(); // Print the title block
void print_prompt(int16_t selected_dac); // Prompt the user for an input command
int16_t prompt_voltage_or_code();
uint16_t get_voltage(float LTC2655_lsb, int16_t LTC2655_offset);
uint16_t get_code();
int8_t calibrate_dac(uint8_t index); // Calibrate the selected DAC using a voltmeter. The routine does a linear curve fit given two data points.
int8_t menu_1_select_dac(int16_t *selected_dac);
int8_t menu_2_write_to_input_register(int16_t selected_dac);
int8_t menu_3_write_and_update_dac(int16_t selected_dac);
int8_t menu_4_update_power_up_dac(int16_t selected_dac);
int8_t menu_5_power_down_dac(int16_t selected_dac);
int8_t menu_6_set_reference_mode(); // int, ext, if ext, prompt for voltage
int8_t menu_7_calibrate_dacs();
int8_t menu_8_enable_calibration();
// Global variables
static uint8_t demo_board_connected; //!< Set to 1 if the board is connected
static uint8_t shift_count = 0; //!< The data align shift count. For 16-bit=0, for 12-bits=4
static uint8_t reference_mode; //!< Tells whether to set internal or external reference
// Global calibration variables
static float reference_voltage; //!< Reference voltage, either internal or external
static int16_t LTC2655_offset[5]; //!< DAC offset - index 4 for "all DACs." If part is calibrated, then index 0 is stored to "all DACs."
static float LTC2655_lsb[5]; //!< The LTC2655 lsb - index 4 for "all DACs." If part is calibrated, then index 0 is stored to "all DACs."
// Constants
//! Lookup table for DAC address. Allows the "All DACs" address to be indexed right after DAC D in loops.
//! This technique is very useful for devices with non-monotonic channel addresses.
const uint8_t address_map[5] = {LTC2655_DAC_A, LTC2655_DAC_B, LTC2655_DAC_C, LTC2655_DAC_D, LTC2655_DAC_ALL}; //!< Map entered option 0..2 to DAC address
//! Used to keep track to print voltage or print code
enum {
PROMPT_VOLTAGE = 0, /**< 0 */
PROMPT_CODE = 1 /**< 1 */
};
//! Initialize Linduino
void setup()
// Setup the program
{
char demo_name[] = "DC1703"; // Demo Board Name stored in QuikEval EEPROM
quikeval_I2C_init(); // Configure the EEPROM I2C port for 100khz
quikeval_I2C_connect(); // Connect I2C to main data port
Serial.begin(115200); // Initialize the serial port to the PC
print_title();
demo_board_connected = discover_demo_board(demo_name);
if (demo_board_connected)
{
restore_calibration();
print_prompt(0);
}
}
//! Repeats Linduino loop
void loop()
{
int8_t ack=0;
int16_t user_command;
static int16_t selected_dac = 0; // The selected DAC to be updated (0=A, 1=B ... 5=All). Initialized to "A".
// The main control loop
if (demo_board_connected) // Do nothing if the demo board is not connected
{
if (Serial.available()) // Check for user input
{
user_command = read_int(); // Read the user command
Serial.println(user_command);
Serial.flush();
ack = 0;
switch (user_command)
{
case 1:
ack |= menu_1_select_dac(&selected_dac);
break;
case 2:
ack |= menu_2_write_to_input_register(selected_dac);
break;
case 3:
ack |= menu_3_write_and_update_dac(selected_dac);
break;
case 4:
ack |= menu_4_update_power_up_dac(selected_dac);
break;
case 5:
ack |= menu_5_power_down_dac(selected_dac);
break;
case 6:
ack |= menu_6_set_reference_mode(); // int, ext, if ext, prompt for voltage
ack |= restore_calibration();
break;
case 7:
ack |= menu_7_calibrate_dacs();
restore_calibration();
break;
case 8:
menu_8_enable_calibration();
restore_calibration();
break;
default:
Serial.println("Incorrect Option");
break;
}
if (ack) Serial.println("I2C NACK received, check address\n");
Serial.println("\n*****************************************************************");
print_prompt(selected_dac);
}
}
}
// Function Definitions
//! Select which DAC to operate on
//! @return 0
int8_t menu_1_select_dac(int16_t *selected_dac)
{
// Select a DAC to operate on
Serial.print("Select DAC to operate on (0=A, 1=B, 2=C, 3=D, 4=All)");
*selected_dac = read_int();
if (*selected_dac == 4)
Serial.println("All");
else
Serial.println(*selected_dac);
return(0);
}
//! Write data to input register, but do not update DAC output
//! @return ACK bit (0=acknowledge, 1=no acknowledge)
int8_t menu_2_write_to_input_register(int16_t selected_dac)
{
int8_t ack=0;
uint16_t dac_code;
if (prompt_voltage_or_code() == PROMPT_VOLTAGE)
dac_code = get_voltage(LTC2655_lsb[selected_dac], LTC2655_offset[selected_dac]);
else
dac_code = get_code();
ack |= LTC2655_write(LTC2655_I2C_ADDRESS, LTC2655_CMD_WRITE, address_map[selected_dac], dac_code << shift_count);
return (ack);
}
//!Write data to DAC register (which updates output immediately)
//! @return ACK bit (0=acknowledge, 1=no acknowledge)
int8_t menu_3_write_and_update_dac(int16_t selected_dac)
{
int8_t ack=0;
uint16_t dac_code;
if (prompt_voltage_or_code() == PROMPT_VOLTAGE)
dac_code = get_voltage(LTC2655_lsb[selected_dac], LTC2655_offset[selected_dac]);
else
dac_code = get_code();
ack |= LTC2655_write(LTC2655_I2C_ADDRESS, LTC2655_CMD_WRITE_UPDATE, address_map[selected_dac], dac_code << shift_count);
return (ack);
}
//! Update DAC with data that is stored in input register, power up if sleeping
//! @return ACK bit (0=acknowledge, 1=no acknowledge)
int8_t menu_4_update_power_up_dac(int16_t selected_dac)
{
// Update DAC
int8_t ack=0;
ack |= LTC2655_write(LTC2655_I2C_ADDRESS, LTC2655_CMD_UPDATE, address_map[selected_dac], 0x0000);
return (ack);
}
//! Power down DAC
//! @return ACK bit (0=acknowledge, 1=no acknowledge)
int8_t menu_5_power_down_dac(int16_t selected_dac)
{
// Power down DAC
int8_t ack=0;
ack |= LTC2655_write(LTC2655_I2C_ADDRESS, LTC2655_CMD_POWER_DOWN, address_map[selected_dac], 0x0000);
return (ack);
}
//! Set reference mode and store to EEPROM
//! @return 0
int8_t menu_6_set_reference_mode(void) // int, ext, if ext, prompt for voltage
{
int16_t user_input;
Serial.println("Select reference mode - 0 for Internal, 1 for External");
user_input = read_int();
if (user_input == 1)
{
reference_mode = REF_EXTERNAL;
Serial.println("External reference mode; enter external reference voltage");
reference_voltage = read_float();
Serial.print(reference_voltage, 5);
Serial.println("V");
eeprom_write_float(EEPROM_I2C_ADDRESS, reference_voltage, EXT_REF_V_BASE);
}
else
{
reference_mode = REF_INTERNAL;
Serial.println("Internal reference mode selected");
}
Serial.println("Writing reference mode to EEPROM\n\n");
eeprom_write_byte(EEPROM_I2C_ADDRESS, reference_mode, STORED_REF_STATE_BASE);
return(0);
}
//! Calibrate all DACs by measuring two known outputs
//! @return 0
int8_t menu_7_calibrate_dacs()
{
// Calibrate the DACs using a multi-meter
uint8_t i;
for (i = 0; i < 4; i++)
{
calibrate_dac(i); // Run calibration routine
}
store_calibration();
return (0);
}
//! Enable / Disable calibration. Use with caution - behavior is undefined if you enable calibration and an actual
//! calibration cycle has not been performed.
//! @return 0
int8_t menu_8_enable_calibration()
{
int16_t user_input;
Serial.println(F("\n\nSelect option - 0: Enable Internal, 1: Disable Internal, 2: Enable External, 3: Disable External"));
user_input = read_int();
switch (user_input)
{
case 0:
Serial.println(F("Enabling Internal Cal Params"));
eeprom_write_int16(EEPROM_I2C_ADDRESS, EEPROM_CAL_KEY, INT_CAL_VALID_BASE);
break;
case 1:
Serial.println(F("Disabling Internal Cal Params"));
eeprom_write_int16(EEPROM_I2C_ADDRESS, 0x0000, INT_CAL_VALID_BASE);
break;
case 2:
Serial.println(F("Enabling External Cal Params"));
eeprom_write_int16(EEPROM_I2C_ADDRESS, EEPROM_CAL_KEY, EXT_CAL_VALID_BASE);
break;
case 3:
Serial.println(F("Disabling External Cal Params"));
eeprom_write_int16(EEPROM_I2C_ADDRESS, 0x0000, EXT_CAL_VALID_BASE);
break;
}
return(0);
}
//! Read stored calibration parameters from nonvolatile EEPROM on demo board
//! @return Return 1 if successful, 0 if not
int8_t restore_calibration()
// Read the DAC calibration from EEPROM
// Return 1 if successful, 0 if not
{
int8_t ack=0;
int16_t intvalid, extvalid;
uint8_t i, eeaddr;
float dac_count; // The number of codes, 4096 for 12 bits, 65536 for 16 bits
Serial.println(F("\n\nReading Calibration parameters from EEPROM..."));
float full_scale; // To avoid confusion - in internal ref mode, FS=Vref, in ext mode, FS=2*Vref
// Read the cal keys from the EEPROM.
eeprom_read_int16(EEPROM_I2C_ADDRESS, &intvalid, INT_CAL_VALID_BASE);
eeprom_read_int16(EEPROM_I2C_ADDRESS, &extvalid, EXT_CAL_VALID_BASE);
// Read the stored reference state
eeprom_read_byte(EEPROM_I2C_ADDRESS, (char *) &reference_mode, STORED_REF_STATE_BASE);
// Read external ref V unconditionally, overwrite with defaults if no cal found
eeprom_read_float(EEPROM_I2C_ADDRESS, &reference_voltage, EXT_REF_V_BASE);
if (reference_mode == REF_EXTERNAL)
{
Serial.println(F("Restored external ref. Voltage:"));
Serial.println(reference_voltage, 5);
}
else // EITHER reference is set to internal, OR not programmed in which case default to internal
{
reference_mode = REF_INTERNAL; // Redundant if already set
Serial.println("Internal reference mode set");
}
// Write the reference mode to the DAC right away
ack |= LTC2655_write(LTC2655_I2C_ADDRESS, reference_mode, 0x0F, 0x0000);
// Set up default values, shift count, DAC count
// Calibration parameters MAY be changed next, if match
// between reference mode and stored calibration
full_scale = reference_voltage * 2.0; // If external ref mode, this applies.
switch (demo_board.option)
{
case 'A':
// LTC2655CUF-L16, 16-bits, 2.5V full scale
shift_count = 0;
if (reference_mode == REF_INTERNAL) full_scale = 2.5;
dac_count = 65536;
break;
case 'B':
// LTC2655CUF-H16, 16-bits, 4.096V full scale
shift_count = 0;
if (reference_mode == REF_INTERNAL) full_scale = 4.096;
dac_count = 65536;
break;
case 'C':
// LTC2655CUF-L12, 12-bits, 2.5V full scale
shift_count = 4;
if (reference_mode == REF_INTERNAL) full_scale = 2.5;
dac_count = 4096;
break;
case 'D':
// LTC2655CUF-H12, 12-bits, 4.096V full scale
shift_count = 4;
if (reference_mode == REF_INTERNAL) full_scale = 4.096;
dac_count = 4096;
break;
}
for (i = 0; i <= 4; i++)
{
LTC2655_offset[i] = 0;
LTC2655_lsb[i] = full_scale / dac_count;
}
// Restore calibration IF reference mode matches stored calibraiton
eeaddr = 0; // Assume no calibration present or mismatch between cal and reference mode
if ((intvalid == EEPROM_CAL_KEY) && (reference_mode == REF_INTERNAL))
{
eeaddr = INT_CAL_PARAMS_BASE;
Serial.println(F("Found internal calibration, restoring...)"));
}
else if ((extvalid == EEPROM_CAL_KEY) && (reference_mode == REF_EXTERNAL))
{
eeaddr = EXT_CAL_PARAMS_BASE;
Serial.println(F("Found external calibration, restoring...)"));
}
else Serial.println(F("Calibration not found for this\nreference mode, using ideal calibration"));
if (eeaddr != 0) // If cal key was enabled and reference mode is correct, read offset and lsb
{
eeprom_read_int16(EEPROM_I2C_ADDRESS, <C2655_offset[0], eeaddr);
eeprom_read_int16(EEPROM_I2C_ADDRESS, <C2655_offset[1], eeaddr + 2);
eeprom_read_int16(EEPROM_I2C_ADDRESS, <C2655_offset[2], eeaddr + 4);
eeprom_read_int16(EEPROM_I2C_ADDRESS, <C2655_offset[3], eeaddr + 6);
eeprom_read_float(EEPROM_I2C_ADDRESS, <C2655_lsb[0], eeaddr + 8);
eeprom_read_float(EEPROM_I2C_ADDRESS, <C2655_lsb[1], eeaddr + 12);
eeprom_read_float(EEPROM_I2C_ADDRESS, <C2655_lsb[2], eeaddr + 16);
eeprom_read_float(EEPROM_I2C_ADDRESS, <C2655_lsb[3], eeaddr + 20);
LTC2655_offset[4] = LTC2655_offset[0]; // Copy cal value for DAC A to cal value for
LTC2655_lsb[4] = LTC2655_lsb[0]; // DAC ALL
Serial.println("Calibration Restored");
}
for (i=0; i<=4; ++i)
{
Serial.print("DAC ");
Serial.print((char) ('A' + i));
Serial.print(" offset: ");
Serial.print(LTC2655_offset[i]);
Serial.print(" , lsb: ");
Serial.print(LTC2655_lsb[i]*1000, 4);
Serial.println(" mv");
}
Serial.println("(DAC E applies to ALL DACs selections)");
if (eeaddr != 0) return (1);
return (ack);
}
//! Store measured calibration parameters to nonvolatile EEPROM on demo board
void store_calibration()
// Store the DAC calibration to the EEPROM
{
uint8_t eeaddr;
if (reference_mode == REF_INTERNAL)
{
eeprom_write_int16(EEPROM_I2C_ADDRESS, EEPROM_CAL_KEY, INT_CAL_VALID_BASE);
eeaddr = INT_CAL_PARAMS_BASE;
}
else
{
eeprom_write_int16(EEPROM_I2C_ADDRESS, EEPROM_CAL_KEY, EXT_CAL_VALID_BASE);
eeaddr = EXT_CAL_PARAMS_BASE;
}
eeprom_write_int16(EEPROM_I2C_ADDRESS, LTC2655_offset[0], eeaddr); // Offset
eeprom_write_int16(EEPROM_I2C_ADDRESS, LTC2655_offset[1], eeaddr + 2);
eeprom_write_int16(EEPROM_I2C_ADDRESS, LTC2655_offset[2], eeaddr + 4);
eeprom_write_int16(EEPROM_I2C_ADDRESS, LTC2655_offset[3], eeaddr + 6);
eeprom_write_float(EEPROM_I2C_ADDRESS, LTC2655_lsb[0], eeaddr + 8); // lsb
eeprom_write_float(EEPROM_I2C_ADDRESS, LTC2655_lsb[1], eeaddr + 12);
eeprom_write_float(EEPROM_I2C_ADDRESS, LTC2655_lsb[2], eeaddr + 16);
eeprom_write_float(EEPROM_I2C_ADDRESS, LTC2655_lsb[3], eeaddr + 20);
Serial.println(F("Calibration Stored to EEPROM"));
}
//! Prompt user to enter a voltage or digital code to send to DAC
//! @return prompt type
int16_t prompt_voltage_or_code()
{
int16_t user_input;
Serial.print(F("Type 1 to enter voltage, 2 to enter code:"));
Serial.flush();
user_input = read_int();
Serial.println(user_input);
if (user_input != 2)
return(PROMPT_VOLTAGE);
else
return(PROMPT_CODE);
}
//! Get voltage from user input, calculate DAC code based on lsb, offset
//! @return voltage
uint16_t get_voltage(float LTC2655_lsb, int16_t LTC2655_offset)
{
float dac_voltage;
Serial.print(F("Enter Desired DAC output voltage: "));
dac_voltage = read_float();
Serial.print(dac_voltage);
Serial.println(" V");
Serial.flush();
return(LTC2655_voltage_to_code(dac_voltage, LTC2655_lsb, LTC2655_offset));
}
//! Get code to send to DAC directly, in decimal, hex, or binary
//! @return DAC code
uint16_t get_code()
{
uint16_t returncode;
Serial.println("Enter Desired DAC Code");
Serial.print("(Format 32768, 0x8000, 0100000, or B1000000000000000): ");
returncode = (uint16_t) read_int();
Serial.print("0x");
Serial.println(returncode, HEX);
Serial.flush();
return(returncode);
}
//! Prints the title block when program first starts.
void print_title()
{
Serial.println("");
Serial.println(F("*****************************************************************"));
Serial.println(F("* DC1703 Demonstration Program *"));
Serial.println(F("* *"));
Serial.println(F("* This program demonstrates how to send data to the LTC2655 *"));
Serial.println(F("* quad 16/12-bit DAC found on the DC1703 demo board. *"));
Serial.println(F("* *"));
Serial.println(F("* Set the baud rate to 115200 and select the newline terminator.*"));
Serial.println(F("* *"));
Serial.println(F("*****************************************************************"));
}
//! Prints main menu.
void print_prompt(int16_t selected_dac)
{
Serial.println(F("\nCommand Summary:"));
Serial.println(F(" 1-Select DAC"));
Serial.println(F(" 2-Write to input register (no update)"));
Serial.println(F(" 3-Write and update DAC"));
Serial.println(F(" 4-Update / power up DAC"));
Serial.println(F(" 5-Power down DAC"));
Serial.println(F(" 6-Set reference mode"));
Serial.println(F(" 7-Calibrate DAC"));
Serial.println(F(" 8-Enable / Disable calibration"));
Serial.println("\nPresent Values:");
Serial.print(" Selected DAC: ");
if (selected_dac != 4)
Serial.println((char) (selected_dac + 0x41));
else
Serial.println("All");
//Serial.print(" DAC Code: 0x");
// Serial.println(code[selected_dac], HEX);
// Serial.print(" Calculated DAC Output Voltage = ");
// Serial.print(voltage, 4);
// Serial.println(" V");
Serial.print(" DAC Reference: ");
if (reference_mode == REF_INTERNAL)
Serial.println("Internal");
else
{
Serial.print(F("External "));
Serial.print(reference_voltage, 5);
Serial.println(F("V reference, please verify"));
Serial.print(F("Enter a command:"));
}
Serial.flush();
}
//! Calibrate the selected DAC using a voltmeter. The routine
//! does a linear curve fit given two data points.
//! @return ACK bit (0=acknowledge, 1=no acknowledge)
int8_t calibrate_dac(uint8_t index)
{
int8_t ack=0;
uint16_t code1 = 0x0200; //! Calibration code 1
uint16_t code2 = 0xFFFF; //! Calibration code 2
float voltage1; //! Calibration voltage 1
float voltage2; //! Calibration voltage 2
Serial.println("");
Serial.print("Calibrating DAC ");
Serial.println((char) (0x41 + index));
// Left align 12-bit code1 to 16 bits & write to DAC
ack |= LTC2655_write(LTC2655_I2C_ADDRESS, LTC2655_CMD_WRITE_UPDATE, index, code1 << shift_count);
Serial.print("DAC code set to 0x");
Serial.println(code1, HEX);
Serial.print("Enter measured DAC voltage:");
voltage1 = read_float();
Serial.print(voltage1, 6);
Serial.println(" V");
// Left align 12-bit code2 to 16 bits & write to DAC
ack |= LTC2655_write(LTC2655_I2C_ADDRESS, LTC2655_CMD_WRITE_UPDATE, index, code2 << shift_count);
Serial.print("DAC code set to 0x");
Serial.println(code2, HEX);
Serial.print("Enter measured DAC voltage:");
voltage2 = read_float();
Serial.print(voltage2, 6);
Serial.println(" V");
LTC2655_calibrate(code1, code2, voltage1, voltage2, <C2655_lsb[index], <C2655_offset[index]);
return(ack);
}
Download LTC2655 Linduino .CPP File
/*!
LTC2655: Quad I2C 16-/12-Bit Rail-to-Rail DACs with 10ppm/C Max Reference
@verbatim
The LTC2655 is a family of Quad I2C 16-/12-Bit Rail-to-Rail DACs with
integrated 10ppm/C max reference. The DACs have built-in high performance,
rail-to-rail, output buffers and are guaranteed monotonic. The LTC2655-L has a
full-scale output of 2.5V with the integrated reference and operates from a
single 2.7V to 5.5V supply. The LTC2655-H has a full-scale output of 4.096V with
the integrated reference and operates from a 4.5V to 5.5V supply. Each DAC can
also operate with an external reference, which sets the full-scale output to 2
times the external reference voltage.
The parts use the 2-wire I2C compatible serial interface. The LTC2655 operates
in both the standard mode (maximum clock rate of 100kHz) and the fast mode
(maximum clock rate of 400kHz). The LTC2655 incorporates a power-on reset
circuit that is controlled by the PORSEL pin. If PORSEL is tied to GND the DACs
power-on reset to zero-scale. If PORSEL is tied to VCC, the DACs power-on reset
to mid-scale.
@endverbatim
http://www.linear.com/product/LTC2655
http://www.linear.com/product/LTC2655#demoboards
REVISION HISTORY
$Revision: 1990 $
$Date: 2013-10-08 13:02:50 -0700 (Tue, 08 Oct 2013) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
//! @defgroup LTC2655 LTC2655: Quad I2C 16-/12-Bit Rail-to-Rail DACs with 10ppm/C Max Reference
/*! @file
@ingroup LTC2655
Library for LTC2655: Quad I2C 16-/12-Bit Rail-to-Rail DACs with 10ppm/C Max Reference
*/
#include <Arduino.h>
#include <stdint.h>
#include <math.h>
#include "Linduino.h"
#include "LT_I2C.h"
#include "LTC2655.h"
// Write the dac_command byte and 16-bit dac_code to the LTC2655.
// The function returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC2655_write(uint8_t i2c_address, uint8_t dac_command, uint8_t dac_address, uint16_t dac_code)
{
int8_t ack;
ack = i2c_write_word_data(i2c_address, dac_command | dac_address, dac_code);
return(ack);
}
// Calculate a LTC2655 DAC code given the desired output voltage and DAC address (0-3)
uint16_t LTC2655_voltage_to_code(float dac_voltage, float LTC2655_lsb, int16_t LTC2655_offset)
{
int32_t dac_code;
float float_code;
float_code = dac_voltage / LTC2655_lsb; //! 1) Calculate the DAC code
float_code = (float_code > (floor(float_code) + 0.5)) ? ceil(float_code) : floor(float_code); //! 2) Round
dac_code = (int32_t)float_code - LTC2655_offset; //! 3) Subtract offset
if (dac_code < 0) //! 4) If DAC code < 0, Then DAC code = 0
dac_code = 0;
return ((uint16_t)dac_code); //! 5) Cast DAC code as uint16_t
}
// Calculate the LTC2655 DAC output voltage given the DAC code and DAC address (0-3)
float LTC2655_code_to_voltage(uint16_t dac_code, float LTC2655_lsb, int16_t LTC2655_offset)
{
float dac_voltage;
dac_voltage = ((float)(dac_code + LTC2655_offset)* LTC2655_lsb); //! 1) Calculates the dac_voltage
return (dac_voltage);
}
// Calculate the LTC2655 offset and LSB voltage given two measured voltages and their corresponding codes
void LTC2655_calibrate(uint16_t dac_code1, uint16_t dac_code2, float voltage1, float voltage2, float *LTC2655_lsb, int16_t *LTC2655_offset)
{
float temp_offset;
*LTC2655_lsb = (voltage2 - voltage1) / ((float) (dac_code2 - dac_code1)); //! 1) Calculate the LSB
temp_offset = (voltage1/(*LTC2655_lsb) - (float)dac_code1); //! 2) Calculate the offset
temp_offset = (temp_offset > (floor(temp_offset) + 0.5)) ? ceil(temp_offset) : floor(temp_offset); //! 3) Round offset
*LTC2655_offset = (int16_t)temp_offset; //! 4) Cast as int16_t
}
Download LTC2655 Linduino Header File
/*!
LTC2655: Quad I2C 16-/12-Bit Rail-to-Rail DACs with 10ppm/C Max Reference
@verbatim
The LTC2655 is a family of Quad I2C 16-/12-Bit Rail-to-Rail DACs with
integrated 10ppm/C max reference. The DACs have built-in high performance,
rail-to-rail, output buffers and are guaranteed monotonic. The LTC2655-L has a
full-scale output of 2.5V with the integrated reference and operates from a
single 2.7V to 5.5V supply. The LTC2655-H has a full-scale output of 4.096V with
the integrated reference and operates from a 4.5V to 5.5V supply. Each DAC can
also operate with an external reference, which sets the full-scale output to 2
times the external reference voltage.
The parts use the 2-wire I2C compatible serial interface. The LTC2655 operates
in both the standard mode (maximum clock rate of 100kHz) and the fast mode
(maximum clock rate of 400kHz). The LTC2655 incorporates a power-on reset
circuit that is controlled by the PORSEL pin. If PORSEL is tied to GND the DACs
power-on reset to zero-scale. If PORSEL is tied to VCC, the DACs power-on reset
to mid-scale.
I2C DATA FORMAT (MSB First):
Byte #1 Byte #2
MSB
LTC2655-16 : START SA6 SA5 SA4 SA3 SA2 SA1 SA0 W SACK C3 C2 C1 C0 A3 A2 A1 A0 SACK
LTC2655-12 : START SA6 SA5 SA4 SA3 SA2 SA1 SA0 W SACK C3 C2 C1 C0 A3 A2 A1 A0 SACK
Byte #3 Byte #4
LSB
D15 D14 D13 D12 D11 D10 D9 D8 SACK D7 D6 D5 D4 D3 D2 D1 D0 SACK STOP
D11 D10 D9 D8 D7 D6 D5 D4 SACK D3 D2 D1 D0 X X X X SACK STOP
START: I2C Start
SAx : I2C Address
W : I2C Write (0)
SACK : I2C Slave Generated Acknowledge (Active Low)
Cx : DAC Command Code
Ax : DAC Address (0=DACA, 1=DACB, 2=DACC, 3=DACD, 0xFF=All DACs)
Dx : DAC Data Bits
X : Don't care
STOP : I2C Stop
Example Code:
Set DAC A to to 2V for 16-bit DAC.
shift_count = 0; // 16-bit DAC does not have to be shifted
dac_voltage = 2.0; // Sets dac voltage variable to 2v
dac_code = LTC2655_voltage_to_code(dac_voltage, LTC2655_lsb, LTC2655_offset); // Calculate DAC code from voltage, lsb, and offset
ack = LTC2655_write(LTC2655_I2C_ADDRESS, LTC2655_CMD_WRITE_UPDATE, LTC2655_DAC_A, dac_code); // Set DAC A with DAC code
@endverbatim
http://www.linear.com/product/LTC2655
http://www.linear.com/product/LTC2655#demoboards
REVISION HISTORY
$Revision: 1861 $
$Date: 2013-08-13 09:48:57 -0700 (Tue, 13 Aug 2013) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC2655
Header for LTC2655: Quad I2C 16-/12-Bit Rail-to-Rail DACs with 10ppm/C Max Reference
*/
#ifndef LTC2655_H
#define LTC2655_H
#include <Wire.h>
//! @name I2C_Addresses
//!@{
// I2C Address Choices:
// To choose an address, comment out all options except the
// configuration on the demo board.
// Address assignment
// LTC2655 I2C Address // AD2 AD1 AD0
#define LTC2655_I2C_ADDRESS 0x10 // GND GND GND
// #define LTC2655_I2C_ADDRESS 0x11 // GND GND Float
// #define LTC2655_I2C_ADDRESS 0x12 // GND GND Vcc
// #define LTC2655_I2C_ADDRESS 0x13 // GND Float GND
// #define LTC2655_I2C_ADDRESS 0x20 // GND Float Float
// #define LTC2655_I2C_ADDRESS 0x21 // GND Float Vcc
// #define LTC2655_I2C_ADDRESS 0x22 // GND Vcc GND
// #define LTC2655_I2C_ADDRESS 0x23 // GND Vcc Float
// #define LTC2655_I2C_ADDRESS 0x30 // GND Vcc Vcc
// #define LTC2655_I2C_ADDRESS 0x31 // Float GND GND
// #define LTC2655_I2C_ADDRESS 0x32 // Float GND Float
// #define LTC2655_I2C_ADDRESS 0x33 // Float GND Vcc
// #define LTC2655_I2C_ADDRESS 0x40 // Float Float GND
// #define LTC2655_I2C_ADDRESS 0x41 // Float Float Float
// #define LTC2655_I2C_ADDRESS 0x42 // Float Float Vcc
// #define LTC2655_I2C_ADDRESS 0x43 // Float Vcc GND
// #define LTC2655_I2C_ADDRESS 0x50 // Float Vcc Float
// #define LTC2655_I2C_ADDRESS 0x51 // Float Vcc Vcc
// #define LTC2655_I2C_ADDRESS 0x52 // Vcc GND GND
// #define LTC2655_I2C_ADDRESS 0x53 // Vcc GND Float
// #define LTC2655_I2C_ADDRESS 0x60 // Vcc GND Vcc
// #define LTC2655_I2C_ADDRESS 0x61 // Vcc Float GND
// #define LTC2655_I2C_ADDRESS 0x62 // Vcc Float Float
// #define LTC2655_I2C_ADDRESS 0x63 // Vcc Float Vcc
// #define LTC2655_I2C_ADDRESS 0x70 // Vcc Vcc GND
// #define LTC2655_I2C_ADDRESS 0x71 // Vcc Vcc Float
// #define LTC2655_I2C_ADDRESS 0x72 // Vcc Vcc Vcc
#define LTC2655_I2C_GLOBAL_ADDRESS 0x73
//! @}
//! @name LTC2655 Command Codes
//! @{
//! OR'd together with the DAC address to form the command byte
#define LTC2655_CMD_WRITE 0x00 // Write to input register n
#define LTC2655_CMD_UPDATE 0x10 // Update (power up) DAC register n
#define LTC2655_CMD_WRITE_UPDATE 0x30 // Write to input register n, update (power up) all
#define LTC2655_CMD_POWER_DOWN 0x40 // Power down n
#define LTC2655_CMD_POWER_DOWN_ALL 0x50 // Power down chip (all DACs and reference)
#define LTC2655_CMD_INTERNAL_REFERENCE 0x60 // Select internal reference (power up reference)
#define LTC2655_CMD_EXTERNAL_REFERENCE 0x70 // Select external reference (power down internal reference)
#define LTC2655_CMD_NO_OPERATION 0xF0 // No operation
//! @}
//! @name LTC2655 DAC Addresses
//! @{
//! Which DAC to operate on
#define LTC2655_DAC_A 0x00
#define LTC2655_DAC_B 0x01
#define LTC2655_DAC_C 0x02
#define LTC2655_DAC_D 0x03
#define LTC2655_DAC_ALL 0x0F
//! @}
// Command Example - write to DAC address D and update all.
// dac_command = LTC2655_CMD_WRITE_UPDATE | LTC2655_DAC_D;
//! Write a 16-bit dac_code to the LTC2655.
//! @return ACK bit (0=acknowledge, 1=no acknowledge)
int8_t LTC2655_write(uint8_t i2c_address, //!< I2C address of DAC
uint8_t dac_command, //!< Command Nibble, left-justified, lower nibble set to zero
uint8_t dac_address, //!< DAC Address Nibble, right justified, upper nibble set to zero
uint16_t dac_code //!< 16-bit DAC code
);
//! Calculate a LTC2655 DAC code given the desired output voltage
//! @return The 16-bit code to send to the DAC
uint16_t LTC2655_voltage_to_code(float dac_voltage, //!< Voltage to send to DAC
float LTC2655_lsb, //!< LSB value
int16_t LTC2655_offset //!< Offset
);
//! Calculate the LTC2655 DAC output voltage given the DAC code, offset, and LSB value
//! @return Calculated voltage
float LTC2655_code_to_voltage(uint16_t dac_code, //!< DAC code
float LTC2655_lsb, //!< LSB value
int16_t LTC2655_offset //!< Offset
);
//! Calculate the LTC2655 offset and LSB voltages given two measured voltages and their corresponding codes
//! @return Void
void LTC2655_calibrate(uint16_t dac_code1, //!< First DAC code
uint16_t dac_code2, //!< Second DAC code
float voltage1, //!< First voltage
float voltage2, //!< Second voltage
float *LTC2655_lsb, //!< Returns resulting LSB
int16_t *LTC2655_offset //!< Returns resulting Offset
);
#endif // LTC2655_H
Technical Support
- For immediate technical assistance, contact your local sales office or distributor or call 1-800-4-LINEAR (US customers only) or 408-432-1900.
- For less urgent requests, please complete our Technical Support Request Form. Please allow 2-3 business days for reply.
