LTC2484 - 24-Bit ΔΣ ADC with Easy Drive Input Current Cancellation
Features
- Easy Drive Technology Enables Rail-to-Rail Inputs with Zero Differential Input Current
- Directly Digitizes High Impedance Sensors with Full Accuracy
- 600nVRMS Noise
- GND to VCC Input/Reference Common Mode Range
- Programmable 50Hz, 60Hz or Simultaneous
- /60Hz Rejection Mode
- 2ppm INL, No Missing Codes
- 1ppm Offset and 15ppm Total Unadjusted Error
- Selectable 2× Speed Mode (15Hz Using Internal Oscillator)
- No Latency: Digital Filter Settles in a Single Cycle
- Single Supply 2.7V to 5.5V Operation
- Internal Oscillator
- Available in a Tiny (3mm × 3mm) 10-Lead DFN Package
AEC-Q100 data available for specific packages
Typical Application
Description
The LTC®2484 combines a 24-bit No Latency ΔΣ™ analogto- digital converter with patented Easy Drive™ technology. The patented sampling scheme eliminates dynamic input current errors and the shortcomings of on-chip buffering through automatic cancellation of differential input current. This allows large external source impedances and input signals with rail-to-rail input range to be directly digitized while maintaining exceptional DC accuracy.
The LTC2484 includes an on-chip oscillator. The LTC2484 can be configured to reject line frequencies. 50Hz, 60Hz or simultaneous 50Hz/60Hz line frequency rejection can be selected as well as a 2× speed-up mode.
The LTC2484 allows a wide common mode input range (0V to VCC) independent of the reference voltage. The reference can be as low as 100mV or can be tied directly to VCC. The LTC2484 includes an on-chip trimmed oscillator, eliminating the need for external crystals or oscillators. Absolute accuracy and low drift are automatically maintained through continuous, transparent, offset and full-scale calibration.
Packaging
CAD Symbols and Footprints: The downloadable Zip file below contains the schematic symbol and PCB footprints.
For complete and up to date package information and drawings, please refer to our packaging page
| Part Number | Package | Code | Temp | Package Drawing |
RoHS |
|---|---|---|---|---|---|
| LTC2484CDD#PBF | 3x3 DFN-10 | DD | C | 05-08-1699 | Yes |
| LTC2484CDD#TRPBF | 3x3 DFN-10 | DD | C | 05-08-1699 | Yes |
| LTC2484IDD#PBF | 3x3 DFN-10 | DD | I | 05-08-1699 | Yes |
| LTC2484IDD#TRPBF | 3x3 DFN-10 | DD | I | 05-08-1699 | Yes |
Order Info
- Part numbers ending in PBF are lead free. Solder plated terminal finish (SnPb) versions are non-standard and special terms and conditions and pricing applies if available. Please contact LTC marketing for information.
- Part numbers containing TR or TRM are shipped in tape and reel or 500 unit mini tape and reel, respectively
- Please refer to our general ordering information or the product datasheet for more details
Package Variations and Pricing
| Part Number | Package | Temp | Price (1-99) |
Price (1k)* |
RoHS | |
|---|---|---|---|---|---|---|
| LTC2484CDD#PBF | 3x3 DFN-10 | C | $3.50 | $2.45 | Yes | |
| LTC2484CDD#TRPBF | 3x3 DFN-10 | C | $2.51 | Yes | ||
| LTC2484IDD#PBF | 3x3 DFN-10 | I | $4.20 | $2.94 | Yes | |
| LTC2484IDD#TRPBF | 3x3 DFN-10 | I | $3.00 | Yes | ||
| Buy Now • Request Samples | ||||||
Demo Boards
Linear Technology offers many demo boards free of charge to qualified customers. Contact your local sales office or distributor to inquire about a demo board. Certain demo boards are also available for sale via credit card on this website. Demo boards are for evaluation purposes only. It remains the customer’s responsibility to verify proper and reliable operation in the actual end application.| Part Number | Description | Price | Documentation |
|---|---|---|---|
| DC2126A | High-Accuracy Wireless Temperature Sensor with Solar Battery Life Extender | $175.00 | |
| DC939A | LTC2484IDD Demo Board | 24-Bit Delta Sigma ADC w/Temp (req. DC2026) | $50.00 | |
| Buy Now | |||
Companion Boards
| Part Number | Description | Price | Documentation |
|---|---|---|---|
| DC9006A | Eterna Interface Card | $100.00 | |
| DC9010B | Eterna Serial Programmer | $399.00 | |
| DC9021B | SmartMesh IP Starter Kit | $750.00 | |
| DC2026C | Linduino One Isolated USB Demo Board: An Arduino- and QuikEval-Compatible Code Development Platform | $75.00 | |
| Buy Now | |||
Designed for Automotive and Transportation Applications
AEC-Q100 data is available for these specific part numbers. Please contact your local sales representative for more information regarding reliability reports or to inquire about parts that are not included. For more information, view our Automotive and Transportation page
| Part Number | Package | Temp | Price (1-99) |
Price (1k)* |
RoHS | |
|---|---|---|---|---|---|---|
| LTC2484IDD#PBF | 3x3 DFN-10 | I | $4.20 | $2.94 | Yes | |
| LTC2484IDD#TRPBF | 3x3 DFN-10 | I | $3.00 | Yes | ||
| Buy Now • Request Samples | ||||||
Applications
- Direct Sensor Digitizer
- Weight Scales
- Direct Temperature Measurement
- Strain Gauge Transducers
- Instrumentation
- Industrial Process Control
- DVMs and Meters
People Who Viewed This Product Also Viewed
- LTC2440 - 24-Bit High Speed Differential Delta Sigma ADC with Selectable Speed/Resolution
- LTC6655 - 0.25ppm Noise, Low Drift Precision References
- LTC2400 - 24-Bit µPower No Latency Delta-Sigma ADC in SO-8
- LT5400 - Quad Matched Resistor Network
- LT3080 - Adjustable 1.1A Single Resistor Low Dropout Regulator
- LTC2057/LTC2057HV - High Voltage, Low Noise Zero-Drift Operational Amplifier
- LT6654 - Precision Wide Supply High Output Drive Low Noise Reference
- LTC2983 - Multi-Sensor High Accuracy Digital Temperature Measurement System
- LTC2442 - 24-Bit High Speed 4-Channel Delta Sigma ADC with Integrated Amplifier
- LT4320/LT4320-1 - Ideal Diode Bridge Controller
Product Notifications
Please login to your MyLinear account for notifications of datasheet updates, new document releases and LTspice model announcements for your favorite products. If you do not have a MyLinear account you may Sign Up Now.
Forgot your password? Click here.
Need help? Email mylinear@linear.com with questions and comments.
Design Tools
Linduino
Linduino is an Arduino compatible platform for developing and distributing firmware libraries and code for SPI and I²C-compatible integrated circuits. The Linduino One board interfaces to more than 300 QuikEval demonstration cards, supporting a variety of product types including analog-to-digital converters (ADCs), digital-to-analog converters (DACs), power monitors, and more. Firmware libraries for individual devices are written in C and designed to be portable to a wide variety of processors and microcontrollers. Each library has a demonstration program that can be uploaded to the Linduino One platform to allow the circuit and software to be quickly and easily verified.
Code
Linduino is Linear Technology's Arduino compatible system for developing and distributing firmware libraries and example code for Linear Technology’s integrated circuits. The code below can be downloaded or copied and pasted into your project. Please visit the Linduino Home Page for demo board, manual and setup information.
This part is Code Supported: There is example code available for this part. The code below may rely on other drivers available in the full library.
- LTC2484 - DC939A Linduino .INO File
- LTC2484 Linduino .CPP File
- LTC2484 Linduino Header File
- LTC24XX – Linduino Header File
- LTC24XX – Linduino.CPP File
Download LTC2484 - DC939A Linduino .INO File
/*!
Linear Technology DC939A Demonstration Board.
LTC2484: 24-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation.
@verbatim
NOTES
Setup:
Set the terminal baud rate to 115200 and select the newline terminator. Equipment
required is a precision voltage source and a precision voltmeter. No external
power supply is required. Ensure JP1 is in the +5V position.
To Read data:
The voltage source should be connected with positive lead to IN+ and negative
lead to IN-. The voltage source negative output must also be connected to the GND
pin in order to provide a ground-referenced voltage. Ensure voltage is within
analog input voltage range -0.3V to +2.5V. Swapping input voltages results in a
reversed polarity reading.
How to calibrate:
Short the inputs to ground to calibrate the offset. Next, hit ENTER (this takes
the reading). Now apply approximately 2.49 volts to +IN, with -IN connected to
ground. Measure this voltage with a precise voltmeter and enter this value.
Calibration is now stored in EEPROM. Upon startup the calibration values will be
restored.
Explanation of Commands:
**** MAIN MENU ****
0- Read- By entering this a voltage at the +IN, -IN terminals will be read.
1- Set Rejection- Select this to access the Filter rejection menu. Follow
command cues to enable desired rejection profile of on-chip digital filters.
2- Select 2X Rate- This selection allows disabling of the autocalibration
feature to achieve a benefit of twice the output rate.
3- Calibrate Voltage- Follow the calibration cues to calibrate the device
voltage.
4- Calibrate Temperature- Select this and follow the cues if it is desired to
calibrate the integrated
temperature sensor.
USER INPUT DATA FORMAT:
decimal : 1024
hex : 0x400
octal : 02000 (leading 0 "zero")
binary : B10000000000
float : 1024.0
@endverbatim
http://www.linear.com/product/LTC2484
http://www.linear.com/product/LTC2484#demoboards
REVISION HISTORY
$Revision: 2315 $
$Date: 2014-03-31 13:05:50 -0700 (Mon, 31 Mar 2014) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC2484
*/
#include <Arduino.h>
#include <stdint.h>
#include "Linduino.h"
#include "LT_SPI.h"
#include "UserInterface.h"
#include "LT_I2C.h"
#include "QuikEval_EEPROM.h"
#include "LTC2484.h"
#include "LTC24XX_general.h"
#include <SPI.h>
#include <Wire.h>
// Rejection Constants
#define REJECTION50_60 0 //!< 50-60Hz rejection
#define REJECTION50 1 //!< 50Hz rejection
#define REJECTION60 2 //!< 60Hz rejection
// Function Declaration
void print_title(); // Print the title block
void print_prompt(); // Prompt the user for an input command
int8_t restore_calibration(); // Read the DAC calibration from EEPROM, Return 1 if successful, 0 if not
void store_calibration(); // Store the ADC calibration to the EEPROM
uint8_t build_adc_command(uint8_t temperature); // Build the ADC command byte
uint8_t menu_0_read();
void menu_1_set_rejection();
void menu_2_set_1X_2X();
uint8_t menu_3_calibrate_voltage();
uint8_t menu_4_calibrate_temperature();
// Global variables
static uint8_t demo_board_connected; //!< Set to 1 if the board is connected
static int8_t adc_rejection = REJECTION50_60; //!< The LTC2484 rejection
static int8_t adc_2x = 0; //!< The LTC2484 2x speed mode
// Calibration variables
static float LTC2484_lsb = 9.3132258E-9; //!< Ideal LSB size, 5V/(2^29) for a 5V reference
static int32_t LTC2484_offset_code = 0; //!< Ideal offset
static float LTC2484_t0 = 27.0; //!< Nominal temperature
static float LTC2484_r0 = 45.097156E6; //!< ADC code at the nominal temperature (420mV default)
const uint16_t MISO_TIMEOUT = 1000; //!< The MISO timeout (ms)
//! Initialize Linduino
void setup()
// Setup the program
{
char demo_name[] = "DC939"; // Demo Board Name stored in QuikEval EEPROM
quikeval_SPI_init(); // Configure the spi port for 4MHz SCK
quikeval_SPI_connect(); // Connect SPI to main data port
quikeval_I2C_init(); // Configure the EEPROM I2C port for 100kHz
Serial.begin(115200); // Initialize the serial port to the PC
print_title();
demo_board_connected = discover_demo_board(demo_name);
if (demo_board_connected)
{
restore_calibration();
print_prompt();
}
}
//! Repeats Linduino loop
void loop()
{
uint8_t user_command; // The user input command
uint8_t acknowledge = 0;
if (demo_board_connected)
{
if (Serial.available()) // Check for user input
{
user_command = read_int(); // Read the user command
if (user_command == 'm');
else
Serial.println(user_command);
delay(50); // Allow the print to finish
switch (user_command)
{
case 0:
acknowledge |= menu_0_read();
break;
case 1:
menu_1_set_rejection();
break;
case 2:
menu_2_set_1X_2X();
break;
case 3:
acknowledge |= menu_3_calibrate_voltage();
break;
case 4:
acknowledge |= menu_4_calibrate_temperature();
break;
default:
Serial.println("Incorrect Option");
break;
}
if(acknowledge)
Serial.println(F("***** SPI ERROR *****"));
Serial.println(F("*****************************************************************"));
print_prompt();
}
}
}
// Function Definitions
//! Prints the title block when program first starts.
void print_title()
{
Serial.println();
Serial.println(F("*****************************************************************"));
Serial.println(F("* DC939A Demonstration Program *"));
Serial.println(F("* *"));
Serial.println(F("* This program demonstrates how to send data and receive data *"));
Serial.println(F("* from the 24-bit delta-sigma ADC. *"));
Serial.println(F("* *"));
Serial.println(F("* *"));
Serial.println(F("* Set the baud rate to 115200 select the newline terminator. *"));
Serial.println(F("* *"));
Serial.println(F("*****************************************************************"));
}
//! Prints main menu.
void print_prompt()
{
Serial.println(F("\nPresent Values:"));
Serial.print(F(" Rejection: "));
switch (adc_rejection)
{
case REJECTION50_60:
Serial.println(F("50-60Hz rejection"));
break;
case REJECTION50:
Serial.println(F("50Hz rejection"));
break;
case REJECTION60:
Serial.println(F("60Hz rejection"));
break;
}
Serial.print(F(" 2X Speed: "));
Serial.println(adc_2x, DEC);
Serial.print(F(" Offset Code="));
Serial.println(LTC2484_offset_code);
Serial.print(F(" LSB="));
Serial.print(LTC2484_lsb * 1.0e9, 4);
Serial.println(F("nV (32-bits)"));
Serial.print(F(" R0="));
Serial.println(LTC2484_r0, 0);
Serial.print(F(" T0="));
Serial.print(LTC2484_t0, 1);
Serial.println(F("C"));
Serial.println();
Serial.println(F("Command Summary:"));
Serial.println(F(" 0-Read"));
Serial.println(F(" 1-Set Rejection"));
Serial.println(F(" 2-Set 2X Speed"));
Serial.println(F(" 3-Calibrate Voltage"));
Serial.println(F(" 4-Calibrate Temperature"));
Serial.println();
Serial.print(F("Enter a command:"));
}
//! Read stored calibration parameters from nonvolatile EEPROM on demo board
//! @return 0 if successful, 1 if failure
int8_t restore_calibration()
// Read the DAC calibration from EEPROM
{
int16_t cal_key;
// Read the cal key from the EEPROM
eeprom_read_int16(EEPROM_I2C_ADDRESS, &cal_key, EEPROM_CAL_STATUS_ADDRESS);
if (cal_key == EEPROM_CAL_KEY)
{
// Calibration has been stored, read offset and lsb
eeprom_read_int32(EEPROM_I2C_ADDRESS, <C2484_offset_code, EEPROM_CAL_STATUS_ADDRESS + 2); // Offset
eeprom_read_float(EEPROM_I2C_ADDRESS, <C2484_lsb, EEPROM_CAL_STATUS_ADDRESS + 6); // LSB
eeprom_read_float(EEPROM_I2C_ADDRESS, <C2484_r0, EEPROM_CAL_STATUS_ADDRESS + 10); // Temp r0
eeprom_read_float(EEPROM_I2C_ADDRESS, <C2484_t0, EEPROM_CAL_STATUS_ADDRESS + 14); // Temp t0
Serial.println(F("Calibration Restored"));
return (1);
}
else
{
Serial.println(F("Calibration not found"));
return (0);
}
}
//! Store measured calibration parameters to nonvolatile EEPROM on demo board
void store_calibration()
// Store the ADC calibration to the EEPROM
{
eeprom_write_int16(EEPROM_I2C_ADDRESS, EEPROM_CAL_KEY, EEPROM_CAL_STATUS_ADDRESS); // Cal key
eeprom_write_int32(EEPROM_I2C_ADDRESS, LTC2484_offset_code, EEPROM_CAL_STATUS_ADDRESS + 2); // Offset
eeprom_write_float(EEPROM_I2C_ADDRESS, LTC2484_lsb, EEPROM_CAL_STATUS_ADDRESS + 6); // LSB
eeprom_write_float(EEPROM_I2C_ADDRESS, LTC2484_r0, EEPROM_CAL_STATUS_ADDRESS + 10); // Temp r0
eeprom_write_float(EEPROM_I2C_ADDRESS, LTC2484_t0, EEPROM_CAL_STATUS_ADDRESS + 14); // Temp t0
Serial.println(F("Calibration Stored to EEPROM"));
}
//! Construct ADC command from rejection, input, and 2X parameters
//! @return ADC command
uint8_t build_adc_command(uint8_t temperature)
// Build the ADC command byte
{
uint8_t adc_command = 0; // The LTC2484 command byte
adc_command = LTC2484_ENABLE; // Set ENABLE
switch (adc_rejection)
{
case REJECTION50_60: // Set REJECTION
adc_command |= LTC2484_REJECTION_50HZ_60HZ;
break;
case REJECTION50:
adc_command |= LTC2484_REJECTION_50HZ;
break;
case REJECTION60:
adc_command |= LTC2484_REJECTION_60HZ;
break;
}
if (temperature) // Set Temperature Input
{
adc_command |= LTC2484_TEMPERATURE_INPUT;
adc_command |= LTC2484_AUTO_CALIBRATION;
}
else
{
adc_command |= LTC2484_EXTERNAL_INPUT; // Set Voltage Input
if (adc_2x)
adc_command |= LTC2484_SPEED_2X; // Set 2X Speed
else
adc_command |= LTC2484_AUTO_CALIBRATION;
}
return(adc_command);
}
//! Read ADC
//! @return 0 if successful, 1 if failure
uint8_t menu_0_read()
{
// Read values
int32_t adc_code = 0; // The LTC2484 code
float adc_voltage = 0.0; // The LTC2484 input voltage
float adc_temperature; // The LTC2484 temperature sensor value
uint8_t adc_command; // The LTC2484 command byte
adc_command = build_adc_command(0); // Build ADC command byte for voltage input
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Throw away last reading
adc_command = build_adc_command(1); // Build ADC command byte for temperature input
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Read voltage
Serial.println(F("\nVoltage Measurement"));
Serial.print(F(" Received Code: 0x"));
Serial.println(adc_code, HEX);
Serial.print(F(" Voltage:"));
adc_voltage = LTC2484_code_to_voltage(adc_code, LTC2484_lsb, LTC2484_offset_code);
Serial.print(adc_voltage, 6);
Serial.println(F("V "));
adc_command = build_adc_command(1); // Build ADC command byte for voltage input
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Read temperature
Serial.println(F("\nTemperature Measurement"));
Serial.print(F(" Received Code: 0x"));
Serial.println(adc_code, HEX);
Serial.print(F(" Sensor Voltage:"));
adc_voltage = LTC2484_code_to_voltage(adc_code, LTC2484_lsb, LTC2484_offset_code);
Serial.print(adc_voltage, 6);
Serial.println(F("V"));
Serial.print(F(" Temperature:"));
adc_temperature = LTC2484_temperature(adc_code, LTC2484_t0, LTC2484_r0);
Serial.print(adc_temperature, 1);
Serial.println(F("C\n"));
return(0);
}
//! Set rejection mode
void menu_1_set_rejection()
{
uint8_t user_command; // The user input command
// Set rejection
Serial.println(F("Rejection :"));
Serial.println(F(" 0: 50-60Hz rejection"));
Serial.println(F(" 1: 50Hz rejection"));
Serial.println(F(" 2: 60Hz rejection"));
Serial.println();
Serial.print(F("Select Rejection:"));
user_command = read_int(); // Read the user command
Serial.println(user_command);
switch (user_command)
{
case 1:
adc_rejection = REJECTION50;
break;
case 2:
adc_rejection = REJECTION60;
break;
default:
adc_rejection = REJECTION50_60;
break;
}
}
//! Select 1X or 2X mode
void menu_2_set_1X_2X()
{
// Set 2X rate
uint8_t user_command; // The user input command
Serial.println();
Serial.print(F("Select 2X Rate (0-OFF, 1-ON): "));
user_command = read_int(); // Read the user command
Serial.println(user_command);
switch (user_command)
{
case 0:
adc_2x = 0;
break;
case 1:
adc_2x = 1;
break;
default:
adc_2x = 0;
break;
}
}
//! Calibrate ADC given two known inputs
//! @return 0 if successful, 1 if failure
uint8_t menu_3_calibrate_voltage()
{
// Calibrate voltage measurement
float zero_voltage; // Measured cal voltage
float fs_voltage; // Measured cal voltage
int32_t zero_code; // Cal zero code
int32_t fs_code; // Cal full scale code
uint8_t user_command; // The user input command
int32_t adc_code = 0; // The LTC2484 code
uint8_t adc_command; // The LTC2484 command byte
Serial.println(F("Short the inputs to ground calibrate the offset."));
Serial.println(F("or apply a voltage for the lower point in two point calibration"));
Serial.print(F("Enter the measured input voltage:"));
zero_voltage = read_float();
Serial.println(zero_voltage, 6);
adc_command = build_adc_command(0); // Build ADC command byte for voltage input
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Throw away previous reading
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &zero_code); // Measure zero
Serial.println(F("Apply ~2.40V to +IN"));
Serial.println(F("Enter the measured input voltage:"));
fs_voltage = read_float();
adc_command = build_adc_command(0); // Build ADC command byte for voltage input
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Throw away previous reading
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &fs_code); // Measure full scale
LTC2484_cal_voltage(zero_code, fs_code, zero_voltage, fs_voltage, <C2484_lsb, <C2484_offset_code);
Serial.print(F("ADC offset : "));
Serial.print(LTC2484_offset_code);
Serial.print(F(" ADC lsb : "));
Serial.print(LTC2484_lsb * 1.0e9, 4);
Serial.println(F("nV (32-bits)"));
store_calibration();
return(0);
}
//! Calibrate Temperature given two known inputs
//! @return 0 if successful, 1 if failure
uint8_t menu_4_calibrate_temperature()
{
float adc_cal_temperature; // Measured cal temperature
int32_t adc_code = 0; // The LTC2484 code
uint8_t adc_command; // The LTC2484 command byte
Serial.println(F("Enter the actual temperature(C):"));
adc_cal_temperature = read_float();
adc_command = build_adc_command(1); // Build ADC command byte for temperature input
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Throw away previous reading
if(LTC2484_EOC_timeout(LTC2484_CS, MISO_TIMEOUT)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Measure temperature
LTC2484_cal_temperature(adc_code, adc_cal_temperature, <C2484_t0, <C2484_r0); // Cal temperature
store_calibration(); // Store to eeprom
return(0);
}Download LTC2484 Linduino .CPP File
//! @todo Review this file.
/*!
LTC2484: 24-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation
@verbatim
The LTC2484 combines a 24-bit no latency delta-sigma analog-to-digital
converter with patented Easy Drive technology. The patented sampling scheme
eliminates dynamic input current errors and the shortcomings of on-chip
buffering through automatic cancellation of differential input current. This
allows large external source impedances and input signals with rail-to-rail
input range to be directly digitized while maintaining exceptional DC accuracy.
The LTC2484 includes an on-chip oscillator. The LTC2484 can be configured to
reject line frequencies. 50Hz, 60Hz or simultaneous 50Hz/60Hz line frequency
rejection can be selected as well as a 2x speed-up mode.
The LTC2484 allows a wide common mode input range (0V to VCC) independent of the
reference voltage. The reference can be as low as 100mV or can be tied directly
to VCC. The LTC2484 includes an on-chip trimmed oscillator, eliminating the need
for external crystals or oscillators. Absolute accuracy and low drift are
automatically maintained through continuous, transparent, offset and full-scale
calibration.
@endverbatim
REVISION HISTORY
$Revision: 2316 $
$Date: 2014-03-31 14:17:01 -0700 (Mon, 31 Mar 2014) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
//! @defgroup LTC2484 LTC2484: 24-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation
/*! @file
@ingroup LTC2484
Library for LTC2484: 24-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation
*/
#include <stdint.h>
#include <Arduino.h>
#include "Linduino.h"
#include "LT_SPI.h"
#include "LTC2484.h"
#include "LTC24XX_general.h"
#include <SPI.h>
// Checks for EOC with a specified timeout
int8_t LTC2484_EOC_timeout(uint8_t cs, uint16_t miso_timeout)
{
return LTC24XX_EOC_timeout(cs, miso_timeout);
}
void LTC2484_read(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
// Reads the LTC2484
{
LTC24XX_SPI_8bit_command_32bit_data(cs, adc_command, adc_code);
}
float LTC2484_code_to_voltage(int32_t adc_code, float LTC2484_lsb, int32_t LTC2484_offset_code)
// Calculates the LTC2484 input bipolar voltage
{
return(LTC24XX_diff_code_to_calibrated_voltage(adc_code, LTC2484_lsb, LTC2484_offset_code));
}
float LTC2484_temperature(int32_t adc_code, float LTC2484_t0, float LTC2484_r0)
// Calculate the LTC2484 temperature.
{
adc_code -= 0x20000000; // Converts offset binary to binary
return (((((float) adc_code) / LTC2484_r0) * (LTC2484_t0 + 273)) - 273); // Calculate temperature from ADC code, t0, r0.
}
void LTC2484_cal_voltage(int32_t zero_code, int32_t fs_code, float zero_voltage, float fs_voltage, float *LTC2484_lsb, int32_t *LTC2484_offset_code)
// Calibrate the lsb
{
zero_code -= 0x20000000; // Converts zero code from offset binary to binary
fs_code -= 0x20000000; // Converts full scale from offset binary to binary
float temp_offset;
*LTC2484_lsb = (fs_voltage-zero_voltage)/((float)(fs_code - zero_code)); // Calculate the LSB
temp_offset = (zero_voltage/ *LTC2484_lsb) - zero_code; // Calculate Unipolar offset
temp_offset = (temp_offset > (floor(temp_offset) + 0.5)) ? ceil(temp_offset) : floor(temp_offset); // Round
*LTC2484_offset_code = (int32_t)temp_offset; // Cast as int32_t
}
void LTC2484_cal_temperature(int32_t adc_code, float temperature, float *LTC2484_t0, float *LTC2484_r0)
// Calibrate temperature
{
adc_code -= 0x20000000; // Converts offset binary to binary
*LTC2484_r0 = (float) adc_code; // Convert the adc_code to a float value
*LTC2484_t0 = temperature; // Store the calibration temperature
}
Download LTC2484 Linduino Header File
//! @todo Review this file.
/*!
LTC2484: 24-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation
@verbatim
The LTC2484 combines a 24-bit no latency delta-sigma analog-to-digital converter
with patented Easy Drive technology. The patented sampling scheme eliminates
dynamic input current errors and the shortcomings of on-chip buffering through
automatic cancellation of differential input current. This allows large external
source impedances and input signals with rail-to-rail input range to be directly
digitized while maintaining exceptional DC accuracy.
The LTC2484 includes an on-chip oscillator. The LTC2484 can be configured to
reject line frequencies. 50Hz, 60Hz or simultaneous 50Hz/60Hz line frequency
rejection can be selected as well as a 2x speed-up mode.
The LTC2484 allows a wide common mode input range (0V to VCC) independent of the
reference voltage. The reference can be as low as 100mV or can be tied directly
to VCC. The LTC2484 includes an on-chip trimmed oscillator, eliminating the need
for external crystals or oscillators. Absolute accuracy and low drift are
automatically maintained through continuous, transparent, offset and full-scale
calibration.
SPI DATA FORMAT (MSB First):
Byte #1 Byte #2 Byte #3 Byte #4
Data Out : !EOC DMY SIG D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X X X X X
Data In : EN X X X IM FOA FOB SPD X X X X X X X X X X X X X X X X X X X X X X X X
!EOC : End of Conversion Bit (Active Low)
DMY : Dummy Bit (Always 0)
SIG : Sign Bit (1-data positive, 0-data negative)
Dx : Data Bits
EN : Enable Bit (0-keep previous mode, 1-change mode)
IM : Internal Mode Bit (0-ADC input, 1-temperature sensor input)
FoA : Line Frequency Rejection Select Bit A
FoB : Line Frequency Rejection Select Bit B
SPD : Double Output Rate Select Bit (0-normal rate, auto-calibration on, 2x rate, auto_calibration off)
X : Don't Care
Command Byte
EN IM FoA FoB SPD Comments
0 X X X X Keep Previous Mode
1 0 0 0 0 External Input, 50Hz and 60Hz Rejection, Autocalibration
1 0 0 1 0 External Input, 50Hz Rejection, Autocalibration
1 0 1 0 0 External Input, 60Hz Rejection, Autocalibration
1 0 0 0 1 External Input, 50Hz and 60Hz Rejection, 2x Speed
1 0 0 1 1 External Input, 50Hz Rejection, 2x Speed
1 0 1 0 1 External Input, 60Hz Rejection, 2x Speed
1 1 0 0 X Temperature Input, 50Hz and 60Hz Rejection, Autocalibration
1 1 0 1 X Temperature Input, 50Hz Rejection, Autocalibration
1 1 1 0 X Temperature Input, 60Hz Rejection, Autocalibration
1 X 1 1 X Reserved, Do Not Use
Example Code:
Read the ADC voltage with 60Hz rejection
uint16_t miso_timeout = 1000;
// Build ADC command to read the ADC voltage
adc_command = LTC2484_ENABLE;
adc_command |= LTC2484_EXTERNAL_INPUT;
adc_command |= LTC2484_AUTO_CALIBRATION;
adc_command |= LTC2484_REJECTION_60HZ;
if(LTC2484_EOC_timeout(LTC2484_CS, miso_timeout)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Throw away last reading
if(LTC2484_EOC_timeout(LTC2484_CS, miso_timeout)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Obtains the current reading and stores to adc_code variable
// Convert adc_code to voltage
adc_voltage = LTC2484_code_to_voltage(adc_code, LTC2484_lsb, LTC2484_offset_code);
Read temperature
uint16_t miso_timeout = 1000;
// Build ADC command to read temperature
adc_command = LTC2484_ENABLE;
adc_command |= LTC2484_TEMPERATURE_INPUT;
adc_command |= LTC2484_AUTO_CALIBRATION;
if(LTC2484_EOC_timeout(LTC2484_CS, miso_timeout)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Throw away last reading
if(LTC2484_EOC_timeout(LTC2484_CS, miso_timeout)) // Check for EOC
return(1);
LTC2484_read(LTC2484_CS, adc_command, &adc_code); // Obtains the current reading and stores to adc_code variable
// Convert adc_code to temperature
adc_temperature = LTC2484_temperature(adc_code, LTC2484_t0, LTC2484_r0);
@endverbatim
REVISION HISTORY
$Revision: 2315 $
$Date: 2014-03-31 13:05:50 -0700 (Mon, 31 Mar 2014) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC2484
Header for 2484 24-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation
*/
#ifndef LTC2484_H
#define LTC2484_H
//! define the SPI CS pin
#ifndef LTC2484_CS
#define LTC2484_CS QUIKEVAL_CS
#endif
//! @name LTC2484 Command constants
//!@{
//! Command constants. OR together to form the adc_command byte.
#define LTC2484_ENABLE 0x80
#define LTC2484_DISABLE 0x00
#define LTC2484_EXTERNAL_INPUT 0x00
#define LTC2484_TEMPERATURE_INPUT 0x08
#define LTC2484_REJECTION_50HZ_60HZ 0x00
#define LTC2484_REJECTION_50HZ 0x02
#define LTC2484_REJECTION_60HZ 0x04
#define LTC2484_AUTO_CALIBRATION 0x00
#define LTC2484_SPEED_2X 0x01
//! @}
// Commands
// Construct enable with any other command to form an int command. You can also enable 2Xmode,
// which will increase sample rate by a factor of 2.
//! Checks for EOC with a specified timeout
//! @return Returns 0=successful, 1=unsuccessful (exceeded timeout)
int8_t LTC2484_EOC_timeout(uint8_t cs, //!< Chip Select pin
uint16_t miso_timeout //!< Timeout (in millisends)
);
//! Read LTC2484 result, program configuration for next conversion
// Example - read channel external input with 60Hz rejection and 2X enabled.
// adc_command = (LTC2484_EXTERNAL_INPUT | LTC2484_REJECTION_60HZ) | LTC2484_SPEED_2X;
//! @return void
void LTC2484_read(uint8_t cs, //!< Chip Select pin
uint8_t adc_command, //!< Command byte
int32_t *adc_code //!< Returns raw 32-bit code read from ADC
);
//! Calculates the LTC2484 input bipolar voltage
//! @return Calculated voltage
float LTC2484_code_to_voltage(int32_t adc_code, //!< Raw ADC code
float LTC2484_lsb, //!< LSB value (volts)
int32_t LTC2484_offset_code //!< Offset (Code)
);
//! Calculate the LTC2484 temperature.
//! @return Calculated Temperature
float LTC2484_temperature(int32_t adc_code, //!< ADC code
float LTC2484_t0, //!< Temperature calibration value
float LTC2484_r0 //!< Voltage for temperature calibration value
);
//! Calibrate the lsb
//! @return Void
void LTC2484_cal_voltage(int32_t zero_code, //!< Offset (Code)
int32_t fs_code, //!< Code measured with full-scale input applied
float zero_voltage, //!< Measured zero voltage
float fs_voltage, //!< Actual voltage applied during full-scale measurement
float *LTC2484_lsb, //!< Returns LSB value (volts)
int32_t *LTC2484_offset_code //!< Returns Offset (Code)
);
//! Calibrate temperature
//! @return Void
void LTC2484_cal_temperature(int32_t adc_code, //!< ADC code
float temperature, //!< Actual temperature
float *LTC2484_t0, //!< Temperature calibration value
float *LTC2484_r0 //!< Voltage for temperature calibration value
);
#endif // LTC2484_H
Download LTC24XX – Linduino Header File
/*!
LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs.
@verbatim
LTC2442 / LTC2444 / LTC2445 / LTC2448 / LTC2449 (Are there don't care bits in the low channel counts?
SPI DATA FORMAT (MSB First):
Byte #1 Byte #2
Data Out : !EOC DMY SIG D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16
Data In : 1 0 EN SGL OS S2 S1 S0 OSR3 OSR2 OSR1 OSR1 SPD X X X
Byte #3 Byte #4
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 *D3 *D2 *D1 *D0
X X X X X X X X X X X X X X X X
!EOC : End of Conversion Bit (Active Low)
DMY : Dummy Bit (Always 0)
SIG : Sign Bit (1-data positive, 0-data negative)
Dx : Data Bits
*Dx : Data Bits Below lsb
EN : Enable Bit (0-keep previous mode, 1-change mode)
SGL : Enable Single-Ended Bit (0-differential, 1-single-ended)
OS : ODD/Sign Bit
Sx : Address Select Bit
0SRX : Over Sampling Rate Bits
SPD : Double Output Rate Select Bit (0-Normal rate, auto-calibration on, 2x rate, auto_calibration off)
Command Byte #1
1 0 EN SGL OS S2 S1 S0 Comments
1 0 0 X X X X X Keep Previous Mode
1 0 1 0 X X X X Differential Mode
1 0 1 1 X X X X Single-Ended Mode
| Coversion Rate | RMS | ENOB | OSR | Latency
Command Byte #2 |Internal | External | Noise | | |
| 9MHz | 10.24MHz | | | |
OSR3 OSR2 OSR1 OSR1 SPD | Clock | Clock | | | |
0 0 0 0 0 Keep Previous Speed/Resolution
0 0 0 1 0 3.52kHz 4kHz 23uV 17 64 none
0 0 1 0 0 1.76kHz 2kHz 3.5uV 20.1 128 none
0 0 1 1 0 880Hz 1kHz 2uV 21.3 256 none
0 1 0 0 0 440Hz 500Hz 1.4uV 21.8 512 none
0 1 0 1 0 220Hz 250Hz 1uV 22.4 1024 none
0 1 1 0 0 110Hz 125Hz 750nV 22.9 2048 none
0 1 1 1 0 55Hz 62.5Hz 510nV 23.4 4096 none
1 0 0 0 0 27.5Hz 31.25Hz 375nV 24 8192 none
1 0 0 1 0 13.75Hz 15.625Hz 250nV 24.4 16384 none
1 1 1 1 0 6.87kHz 7.8125Hz 200nV 24.6 32768 none
0 0 0 0 1 Keep Previous Speed/Resolution
OSR3 OSR2 OSR1 OSR1 1 2X Mode *all clock speeds double
Example Code:
Read Channel 0 in Single-Ended with OSR of 65536
uint16_t miso_timeout = 1000;
adc_command = LTC2449_CH0 | LTC2449_OSR_32768 | LTC2449_SPEED_2X; // Build ADC command for channel 0
// OSR = 32768*2 = 65536
if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC
return; // Exit if timeout is reached
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out last reading
if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC
return; // Exit if timeout is reached
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Obtains the current reading and stores to adc_code variable
// Convert adc_code to voltage
adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code);
@endverbatim
http://www.linear.com/product/LTC2449
http://www.linear.com/product/LTC2449#demoboards
REVISION HISTORY
$Revision: 1881 $
$Date: 2013-08-15 09:16:50 -0700 (Thu, 15 Aug 2013) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC24XX_general
Header for LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
*/
#ifndef LTC24XX_general_H
#define LTC24XX_general_H
//! Define the SPI CS pin
#ifndef LTC24XX_CS
#define LTC24XX_CS QUIKEVAL_CS
#endif
//! In 2X Mode, A non offset binary 0 can be produced. This is corrected in the
//! differential code to voltage functions. To disable this correction, uncomment
//! The following #define.
//#define SKIP_EZDRIVE_2X_ZERO_CHECK
/*! @name Mode Configuration for High Speed Family
@{
*/
#define LTC24XX_HS_MULTI_KEEP_PREVIOUS_MODE 0x80
#define LTC24XX_HS_MULTI_KEEP_PREVIOUS_SPEED_RESOLUTION 0x00
#define LTC24XX_HS_MULTI_SPEED_1X 0x00
#define LTC24XX_HS_MULTI_SPEED_2X 0x08
/*!
@}
*/
/*! @name Mode Configuration for EasyDrive Family
@{
*/
// Select ADC source - differential input or PTAT circuit
#define LTC24XX_EZ_MULTI_VIN 0b10000000
#define LTC24XX_EZ_MULTI_PTAT 0b11000000
// Select rejection frequency - 50, 55, or 60Hz
#define LTC24XX_EZ_MULTI_R50 0b10010000
#define LTC24XX_EZ_MULTI_R55 0b10000000
#define LTC24XX_EZ_MULTI_R60 0b10100000
// Speed settings is bit 7 in the 2nd byte
#define LTC24XX_EZ_MULTI_SLOW 0b10000000 // slow output rate with autozero
#define LTC24XX_EZ_MULTI_FAST 0b10001000 // fast output rate with no autozero
/*!
@}
*/
/*! @name Single-Ended Channel Configuration
@verbatim
Channel selection for all multi-channel, differential input ADCs, even those that only require
8 bits of configuration (no further options.) Most devices in this category require a second
byte of configuration for speed mode, temperature sensor selection, etc., but for the sake
of simplicity a single function will be used to read all devices, sending zeros in the second
configuration byte if only the channel is specified.
Applicable devices:
Easy Drive:
LTC2486, LTC2487, LTC2488, LTC2489, LTC2492, LTC2493,
LTC2494, LTC2495, LTC2496, LTC2497, LTC2498, LTC2499
First Generation Differential:
LTC2414, LTC2418, LTC2439
High Speed:
LTC2442, LTC2444, LTC2445, LTC2448, LTC2449
@endverbatim
@{ */
#define LTC24XX_MULTI_CH_CH0 0xB0
#define LTC24XX_MULTI_CH_CH1 0xB8
#define LTC24XX_MULTI_CH_CH2 0xB1
#define LTC24XX_MULTI_CH_CH3 0xB9
#define LTC24XX_MULTI_CH_CH4 0xB2
#define LTC24XX_MULTI_CH_CH5 0xBA
#define LTC24XX_MULTI_CH_CH6 0xB3
#define LTC24XX_MULTI_CH_CH7 0xBB
#define LTC24XX_MULTI_CH_CH8 0xB4
#define LTC24XX_MULTI_CH_CH9 0xBC
#define LTC24XX_MULTI_CH_CH10 0xB5
#define LTC24XX_MULTI_CH_CH11 0xBD
#define LTC24XX_MULTI_CH_CH12 0xB6
#define LTC24XX_MULTI_CH_CH13 0xBE
#define LTC24XX_MULTI_CH_CH14 0xB7
#define LTC24XX_MULTI_CH_CH15 0xBF
/*! @} */
/*! @name Differential Channel Configuration
@verbatim
See note for single-ended configuration above.
@endverbatim
@{ */
#define LTC24XX_MULTI_CH_P0_N1 0xA0
#define LTC24XX_MULTI_CH_P1_N0 0xA8
#define LTC24XX_MULTI_CH_P2_N3 0xA1
#define LTC24XX_MULTI_CH_P3_N2 0xA9
#define LTC24XX_MULTI_CH_P4_N5 0xA2
#define LTC24XX_MULTI_CH_P5_N4 0xAA
#define LTC24XX_MULTI_CH_P6_N7 0xA3
#define LTC24XX_MULTI_CH_P7_N6 0xAB
#define LTC24XX_MULTI_CH_P8_N9 0xA4
#define LTC24XX_MULTI_CH_P9_N8 0xAC
#define LTC24XX_MULTI_CH_P10_N11 0xA5
#define LTC24XX_MULTI_CH_P11_N10 0xAD
#define LTC24XX_MULTI_CH_P12_N13 0xA6
#define LTC24XX_MULTI_CH_P13_N12 0xAE
#define LTC24XX_MULTI_CH_P14_N15 0xA7
#define LTC24XX_MULTI_CH_P15_N14 0xAF
/*! @} */
/*Commands
Construct a channel / resolution control word by bitwise ORing one choice from the channel configuration
and one choice from the Oversample ratio configuration. You can also enable 2Xmode, which will increase
sample rate by a factor of 2 but introduce one cycle of latency.
Example - read channel 3 single-ended at OSR2048, with 2X mode enabled.
adc_command = (LTC2449_CH3 | LTC2449_OSR_2048) | LTC2449_SPEED_2X;
*/
/*! @name Oversample Ratio (OSR) Commands
@{ */
#define LTC24XX_MULTI_CH_OSR_64 0x10
#define LTC24XX_MULTI_CH_OSR_128 0x20
#define LTC24XX_MULTI_CH_OSR_256 0x30
#define LTC24XX_MULTI_CH_OSR_512 0x40
#define LTC24XX_MULTI_CH_OSR_1024 0x50
#define LTC24XX_MULTI_CH_OSR_2048 0x60
#define LTC24XX_MULTI_CH_OSR_4096 0x70
#define LTC24XX_MULTI_CH_OSR_8192 0x80
#define LTC24XX_MULTI_CH_OSR_16384 0x90
#define LTC24XX_MULTI_CH_OSR_32768 0xF0
/*! @}*/
//! Checks for EOC with a specified timeout. Applies to all SPI interface delta sigma
//! ADCs that have SINC4 rejection, does NOT apply to LTC2450/60/70 family.
//! @return Returns 0=successful, 1=unsuccessful (exceeded timeout)
int8_t LTC24XX_EOC_timeout(uint8_t cs, //!< Chip Select pin
uint16_t miso_timeout //!< Timeout (in milliseconds)
);
// Read functions for SPI interface ADCs with a 32 bit output word. These functions are used with both
// Single-ended and differential parts, as there is no interpretation of the data done in
// the function. Also note that these functions can be used for devices that have shorter output lengths,
// the lower bits will read out as "1", as the conversion will be triggered by the last data bit being
// read, which causes SDO to go high.
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_32bit_data(uint8_t cs, //!< Chip Select pin
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command, //!< 1 byte command written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command_high, //!< First command byte written to LTC24XX
uint8_t adc_command_low, //!< Second command written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
//! @return void
void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, //!< Chip Select pin
uint8_t *adc_channel, //!< Returns channel number read.
int32_t *code //!< 4 byte conversion code read from LTC24XX
);
// Read functions for SPI interface ADCs with a 24 bit or 19 bit output word. These functions
// are used with both Single-ended and differential parts, as there is no interpretation of
// the data done in the function. 24 bits will be read out of 19 bit devices
// (LTC2433, LTC2436, LTC2439), with the additional 5 bits being set to 1.
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_24bit_data(uint8_t cs, //!< Chip Select pin
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command, //!< 1 byte command written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command_high, //!< First command byte written to LTC24XX
uint8_t adc_command_low, //!< Second command written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts a 8 bit configuration and returns a 16 bit result.
//! @return void
void LTC24XX_SPI_8bit_command_16bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command, //!< First command byte written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
//! @return void
void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, //!< Chip Select pin
uint8_t *adc_channel, //!< Returns channel number read.
int32_t *code //!< 4 byte conversion code read from LTC24XX
);
// Read functions for I2C interface ADCs with a 32 bit output word. These functions are used with both
// Single-ended and differential parts, as there is no interpretation of the data done in
// the function. Also note that these functions can be used for devices that have shorter output lengths,
// the lower bits will read out as "1", as the conversion will be triggered by the last data bit being
// read, which causes SDO to go high.
// Data is formatted to match the SPI devices, with the MSB in the bit 28 position.
// Unlike the SPI members of this family, checking for EOC MUST immediately be followed by reading the data. This
// is because a stop condition will trigger a new conversion.
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, //!< I2C address of device
uint8_t adc_command, //!< 1 byte command written to LTC24XX
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address, //!< I2C address of device
uint8_t adc_command_high, //!< First command byte written to LTC24XX
uint8_t adc_command_low, //!< Second command written to LTC24XX
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
// Read functions for I2C interface ADCs with a 24 bit or 19 bit output word. These functions
// are used with both Single-ended and differential parts, as there is no interpretation of
// the data done in the function. 24 bits will be read out of 19 bit devices
// (LTC2433, LTC2436, LTC2439), with the additional 5 bits being set to 1.
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! Applies to: LTC2483 (only this lonely one!)
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_24bit_data(uint8_t i2c_address, //!< I2C address of device
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, //!< I2C address of device
uint8_t adc_command, //!< 1 byte command written to LTC24XX
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_16bit_command_24bit_data(uint8_t i2c_address, //!< I2C address of device
uint8_t adc_command_high, //!< First command byte written to LTC24XX
uint8_t adc_command_low, //!< Second command written to LTC24XX
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Calculates the voltage corresponding to an ADC code, given the reference voltage.
//! Applies to Single-Ended input parts (LTC2400-type input)
//! @return Returns voltage calculated from ADC code.
float LTC24XX_SE_code_to_voltage(int32_t adc_code, //!< Code read from ADC
float vref //!< Reference voltage
);
//! Calculates the voltage corresponding to an ADC code, given the reference voltage.
//! Applies to differential input parts (LTC2410 type input)
//! @return Returns voltage calculated from ADC code.
float LTC24XX_diff_code_to_voltage(int32_t adc_code, //!< Code read from ADC
float vref //!< Reference voltage
);
//! Calculates the voltage corresponding to an ADC code, given lsb weight (in volts) and the calibrated
//! ADC offset code (zero code that is subtracted from adc_code).
//! Applies to differential input, SPI interface parts.
//! @return Returns voltage calculated from ADC code.
float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, //!< Code read from ADC
float LTC24XX_lsb, //!< LSB weight (in volts)
int32_t LTC24XX_offset_code //!< The calibrated offset code (This is the ADC code zero code that will be subtracted from adc_code)
);
//! Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
//! @return Void
void LTC24XX_calibrate_voltage(int32_t zero_code, //!< Measured code with the inputs shorted to ground
int32_t fs_code, //!< Measured code at nearly full-scale
float zero_voltage, //!< Measured zero voltage
float fs_voltage, //!< Voltage measured at input (with voltmeter) when fs_code was read from ADC
float *LTC24XX_lsb, //!< Overwritten with lsb weight (in volts)
int32_t *LTC24XX_offset_code //!< Overwritten with offset code (zero code)
);
// I2C Addresses for 8/16 channel parts (LTC2495/7/9)
// ADDRESS CA2 CA1 CA0
// #define LTC24XX_16CH_I2C_ADDRESS 0b0010100 // LOW LOW LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b0010110 // LOW LOW HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b0010101 // LOW LOW FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b0100110 // LOW HIGH LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b0110100 // LOW HIGH HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b0100111 // LOW HIGH FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b0010111 // LOW FLOAT LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b0100101 // LOW FLOAT HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b0100100 // LOW FLOAT FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1010110 // HIGH LOW LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1100100 // HIGH LOW HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1010111 // HIGH LOW FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1110100 // HIGH HIGH LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1110110 // HIGH HIGH HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1110101 // HIGH HIGH FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1100101 // HIGH FLOAT LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1100111 // HIGH FLOAT HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1100110 // HIGH FLOAT FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b0110101 // FLOAT LOW LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b0110111 // FLOAT LOW HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b0110110 // FLOAT LOW FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1000111 // FLOAT HIGH LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1010101 // FLOAT HIGH HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1010100 // FLOAT HIGH FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1000100 // FLOAT FLOAT LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1000110 // FLOAT FLOAT HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1000101 // FLOAT FLOAT FLOAT
// I2C Addresses for 2/4 channel parts
// ADDRESS CA1 CA0
// #define LTC24XX_4CH_I2C_ADDRESS 0b0010100 // LOW LOW
// #define LTC24XX_4CH_I2C_ADDRESS 0b0010110 // LOW HIGH
// #define LTC24XX_4CH_I2C_ADDRESS 0b0010101 // LOW FLOAT
// #define LTC24XX_4CH_I2C_ADDRESS 0b0100110 // HIGH LOW
// #define LTC24XX_4CH_I2C_ADDRESS 0b0110100 // HIGH HIGH
// #define LTC24XX_4CH_I2C_ADDRESS 0b0100111 // HIGH FLOAT
// #define LTC24XX_4CH_I2C_ADDRESS 0b0010111 // FLOAT LOW
// #define LTC24XX_4CH_I2C_ADDRESS 0b0100101 // FLOAT HIGH
// #define LTC24XX_4CH_I2C_ADDRESS 0b0100100 // FLOAT FLOAT
// I2C Addresses for Single channel parts (LTC2481/83/85)
// ADDRESS CA1 CA0/f0*
// #define LTC24XX_1CH_I2C_ADDRESS 0b0010100 // LOW HIGH
// #define LTC24XX_1CH_I2C_ADDRESS 0b0010101 // LOW FLOAT
// #define LTC24XX_1CH_I2C_ADDRESS 0b0010111 // FLOAT HIGH
// #define LTC24XX_1CH_I2C_ADDRESS 0b0100100 // FLOAT FLOAT
// #define LTC24XX_1CH_I2C_ADDRESS 0b0100110 // HIGH HIGH
// #define LTC24XX_1CH_I2C_ADDRESS 0b0100111 // HIGH FLOAT
#endif // LTC24XX_general_H
Download LTC24XX – Linduino.CPP File
/*!
LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs.
@verbatim
These functions and defines apply to all No Latency Delta Sigmas in the
LTC2480 EasyDrive family, LTC2410 differential family, LTC2400 single-ended family,
and the LTC2440 High Speed family with selectable speed / resolution.
It does not cover the LTC2450 tiny, low cost delta sigma ADC famliy.
Please refer to the No Latency Delta Sigma ADC selector guide available at:
http://www.linear.com/docs/41341
@endverbatim
http://www.linear.com/product/LTC2449
http://www.linear.com/product/LTC2449#demoboards
REVISION HISTORY
$Revision: 1807 $
$Date: 2013-07-29 13:06:06 -0700 (Mon, 29 Jul 2013) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
//! @defgroup LTC24XX LTC24XX: All no-latency delta sigma ADCs with SINC4 rejection
/*! @file
@ingroup LTC24XX
Library for LTC24XX no-latency delta sigma ADCs with SINC4 rejection
*/
#include <stdint.h>
#include <Arduino.h>
#include "Linduino.h"
#include <SPI.h>
#include "LT_SPI.h"
#include <Wire.h>
#include "LT_I2C.h"
#include "LTC24XX_general.h"
int8_t LTC24XX_EOC_timeout(uint8_t cs, uint16_t miso_timeout)
// Checks for EOC with a specified timeout (ms)
{
uint16_t timer_count = 0; // Timer count for MISO
output_low(cs); //! 1) Pull CS low
while (1) //! 2) Wait for SDO (MISO) to go low
{
if (input(MISO) == 0) break; //! 3) If SDO is low, break loop
if (timer_count++>miso_timeout) // If timeout, return 1 (failure)
{
output_high(cs); // Pull CS high
return(1);
}
else
delay(1);
}
output_high(cs); // Pull CS high
return(0);
}
// Reads from LTC24XX ADC that has no configuration word and a 32 bit output word.
void LTC24XX_SPI_32bit_data(uint8_t cs, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC2449 data and command
command.LT_uint32 = 0; // Set to zero, not necessary but avoids
// random data in scope shots.
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
*adc_code = data.LT_int32;
}
// Reads from a SPI LTC24XX device that has an 8 bit command and a 32 bit output word.
void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC2449 data and command
command.LT_byte[3] = adc_command;
command.LT_byte[2] = 0;
command.LT_byte[1] = 0;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
*adc_code = data.LT_int32;
}
// Reads from a SPI LTC24XX device that has a 16 bit command and a 32 bit output word.
void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC24XX data and command
command.LT_byte[3] = adc_command_high;
command.LT_byte[2] = adc_command_low;
command.LT_byte[1] = 0;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
*adc_code = data.LT_int32;
}
//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
//! @return void
void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
{
LT_union_int32_4bytes data, command; // ADC data
command.LT_int32 = 0x00000000; // This is a "don't care"
spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)4);
if(data.LT_byte[3] & 0x40) // Obtains Channel Number
{
*adc_channel = 1;
}
else
{
*adc_channel = 0;
}
data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
*code = data.LT_int32; // Return data
}
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_24bit_data(uint8_t cs, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC24XX data and command
command.LT_int32 = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
*adc_code = data.LT_int32;
}
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit output word.
//! @return void
void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC24XX data and command
command.LT_byte[2] = adc_command;
command.LT_byte[1] = 0;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
*adc_code = data.LT_int32;
}
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 24 bit output word.
//! @return void
void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC24XX data and command
command.LT_byte[2] = adc_command_high;
command.LT_byte[1] = adc_command_low;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
*adc_code = data.LT_int32;
}
//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
//! and returning the 24 bit result with the channel bit cleared so the data format matches the rest of the family
//! @return void
void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
{
LT_union_int32_4bytes data, command; // ADC data
command.LT_int32 = 0x00000000; // This is a "don't care"
spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)3);
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
if(data.LT_byte[3] & 0x40) // Obtains Channel Number
{
*adc_channel = 1;
}
else
{
*adc_channel = 0;
}
data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
*code = data.LT_int32; // Return data
}
//I2C functions
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
{
int8_t ack;
uint16_t timer_count = 0; // Timer count to wait for ACK
int8_t buf[4];
LT_union_int32_4bytes data; // LTC24XX data
while(1)
{
ack = i2c_read_block_data(i2c_address, adc_command, 3, data.LT_byte);
if(!ack) break; // !ack indicates success
if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
return(1);
else
delay(1);
}
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
*adc_code = data.LT_int32;
return(ack); // Success
}
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! Data is formatted to match the SPI devices, with the MSB in the bit 28 position.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
)
{
int8_t ack;
uint16_t timer_count = 0; // Timer count to wait for ACK
int8_t buf[4];
LT_union_int32_4bytes data; // LTC24XX data
while(1)
{
ack = i2c_read_block_data(i2c_address, 4, data.LT_byte);
if(!ack) break; // !ack indicates success
if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
return(1);
else
delay(1);
}
data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
*adc_code = data.LT_int32;
return(ack); // Success
}
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
{
int8_t ack;
uint16_t timer_count = 0; // Timer count to wait for ACK
int8_t buf[4];
LT_union_int32_4bytes data; // LTC24XX data
while(1)
{
ack = i2c_read_block_data(i2c_address, adc_command, 4, data.LT_byte);
if(!ack) break; // !ack indicates success
if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
return(1);
else
delay(1);
}
data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
*adc_code = data.LT_int32;
return(ack); // Success
}
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address,uint8_t adc_command_high,
uint8_t adc_command_low,int32_t *adc_code,uint16_t eoc_timeout)
{
int8_t ack;
uint16_t adc_command, timer_count = 0; // Timer count to wait for ACK
int8_t buf[4];
LT_union_int32_4bytes data; // LTC24XX data
adc_command = (adc_command_high << 8) | adc_command_low;
while(1)
{
ack = i2c_two_byte_command_read_block(i2c_address, adc_command, 4, data.LT_byte);
if(!ack) break; // !ack indicates success
if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
return(1);
else
delay(1);
}
data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
*adc_code = data.LT_int32;
return(ack); // Success
}
// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
float LTC24XX_SE_code_to_voltage(int32_t adc_code, float vref)
{
float voltage;
adc_code -= 0x20000000; //! 1) Subtract offset
voltage=(float) adc_code;
voltage = voltage / 268435456.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
return(voltage);
}
// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
// This function handles all differential input parts, including the "single-ended" mode on multichannel
// differential parts. Data from I2C parts must be right-shifted by two bit positions such that the MSB
// is in bit 28 (the same as the SPI parts.)
float LTC24XX_diff_code_to_voltage(int32_t adc_code, float vref)
{
float voltage;
#ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
if(adc_code == 0x00000000)
{
adc_code = 0x20000000;
}
#endif
adc_code -= 0x20000000; //! 1) Converts offset binary to binary
voltage=(float) adc_code;
voltage = voltage / 536870912.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
return(voltage);
}
// Calculates the voltage corresponding to an adc code, given lsb weight (in volts) and the calibrated
// adc offset code (zero code that is subtracted from adc_code). For use with the LTC24XX_cal_voltage() function.
float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, float LTC2449_lsb, int32_t LTC2449_offset_code)
{
float adc_voltage;
#ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
if(adc_code == 0x00000000)
{
adc_code = 0x20000000;
}
#endif
adc_code -= 536870912; //! 1) Converts offset binary to binary
adc_voltage=(float)(adc_code+LTC2449_offset_code)*LTC2449_lsb; //! 2) Calculate voltage from ADC code, lsb, offset.
return(adc_voltage);
}
// Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
void LTC24XX_calibrate_voltage(int32_t zero_code, int32_t fs_code, float zero_voltage, float fs_voltage, float *LTC24XX_lsb, int32_t *LTC24XX_offset_code)
{
zero_code -= 536870912; //! 1) Converts zero code from offset binary to binary
fs_code -= 536870912; //! 2) Converts full scale code from offset binary to binary
float temp_offset;
*LTC24XX_lsb = (fs_voltage-zero_voltage)/((float)(fs_code - zero_code)); //! 3) Calculate the LSB
temp_offset = (zero_voltage/ *LTC24XX_lsb) - zero_code; //! 4) Calculate Unipolar offset
temp_offset = (temp_offset > (floor(temp_offset) + 0.5)) ? ceil(temp_offset) : floor(temp_offset); //! 5) Round
*LTC24XX_offset_code = (int32_t)temp_offset; //! 6) Cast as int32_t
}
Technical Support
- For immediate technical assistance, contact your local sales office or distributor or call 1-800-4-LINEAR (US customers only) or 408-432-1900.
- For less urgent requests, please complete our Technical Support Request Form. Please allow 2-3 business days for reply.
