LTC2448 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
Features
- Up to 8 Differential or 16 Single-Ended Input Channels
- Up to 8kHz Output Rate
- Up to 4kHz Multiplexing Rate
- Selectable Speed/Resolution
- 2µVRMS Noise at 1.76kHz Output Rate
- 200nVRMS Noise at 13.8Hz Output Rate with Simultaneous 50/60Hz Rejection
- Guaranteed Modulator Stability and Lock-Up Immunity for any Input and Reference Conditions
- 0.0005% INL, No Missing Codes
- Autosleep Enables 20µA Operation at 6.9Hz
- <5µV Offset (4.5V < VCC < 5.5V, –40°C to 85°C)
- Differential Input and Differential Reference with GND to VCC Common Mode Range
- No Latency Mode, Each Conversion is Accurate Even After a New Channel is Selected
- Internal Oscillator-No External Components
- LTC2445/LTC2449 Include MUXOUT/ADCIN for External Buffering or Gain
- Tiny QFN 5mm x 7mm Package
AEC-Q100 data available for specific packages
Typical Application
Description
The LTC2444/LTC2445/LTC2448/LTC2449 are 8-/16- channel (4-/8-differential) high speed 24-bit No Latency Delta Sigma ADCs. They use a proprietary delta-sigma architecture enabling variable speed/resolution. Through a simple 4-wire serial interface, ten speed/resolution combinations 6.9Hz/280nVRMS to 3.5kHz/25µVRMS (4kHz with external oscillator) can be selected with no latency between conversion results or shift in DC accuracy (offset, full-scale, linearity, drift). Additionally, a 2X speed mode can be selected enabling output rates up to 7kHz (8kHz if an external oscillator is used) with one cycle latency.
Any combination of single-ended or differential inputs can be selected with a common mode input range from ground to VCC, independent of VREF. While operating in the 1X speed mode the first conversion following a new speed, resolution, or channel selection is valid. Since there is no settling time between conversions, all 8 differential channels can be scanned at a rate of 500Hz. At the conclusion of each conversion, the converter is internally reset eliminating any memory effects between successive conversions and assuring stability of the high order delta-sigma modulator.
Packaging
CAD Symbols and Footprints: The downloadable Zip file below contains the schematic symbol and PCB footprints.
For complete and up to date package information and drawings, please refer to our packaging page
| Part Number | Package | Code | Temp | Package Drawing |
RoHS |
|---|---|---|---|---|---|
| LTC2448CUHF#PBF | 5x7 QFN-38 | UHF | C | 05-08-1701 | Yes |
| LTC2448CUHF#TRPBF | 5x7 QFN-38 | UHF | C | 05-08-1701 | Yes |
| LTC2448IUHF#PBF | 5x7 QFN-38 | UHF | I | 05-08-1701 | Yes |
| LTC2448IUHF#TRPBF | 5x7 QFN-38 | UHF | I | 05-08-1701 | Yes |
Order Info
- Part numbers ending in PBF are lead free. Solder plated terminal finish (SnPb) versions are non-standard and special terms and conditions and pricing applies if available. Please contact LTC marketing for information.
- Part numbers containing TR or TRM are shipped in tape and reel or 500 unit mini tape and reel, respectively
- Please refer to our general ordering information or the product datasheet for more details
Package Variations and Pricing
| Part Number | Package | Temp | Price (1-99) |
Price (1k)* |
RoHS | |
|---|---|---|---|---|---|---|
| LTC2448CUHF#PBF | 5x7 QFN-38 | C | $8.75 | $7.15 | Yes | |
| LTC2448CUHF#TRPBF | 5x7 QFN-38 | C | $7.25 | Yes | ||
| LTC2448IUHF#PBF | 5x7 QFN-38 | I | $10.15 | $8.25 | Yes | |
| LTC2448IUHF#TRPBF | 5x7 QFN-38 | I | $8.35 | Yes | ||
| Buy Now • Request Samples | ||||||
Demo Boards
Linear Technology offers many demo boards free of charge to qualified customers. Contact your local sales office or distributor to inquire about a demo board. Certain demo boards are also available for sale via credit card on this website. Demo boards are for evaluation purposes only. It remains the customer’s responsibility to verify proper and reliable operation in the actual end application.| Part Number | Description | Price | Documentation |
|---|---|---|---|
| DC845A | LTC2448UHF | 24-Bit High Speed 8-/16-Channel Delta Sigma ADC (req DC590) | $50.00 | |
| Buy Now | |||
Companion Boards
| Part Number | Description | Price | Documentation |
|---|---|---|---|
| DC590B | Isolated USB Serial Controller for Linear Technology QuikEval-Compatible Demo Boards | $50.00 | |
| Buy Now | |||
Designed for Automotive and Transportation Applications
AEC-Q100 data is available for these specific part numbers. Please contact your local sales representative for more information regarding reliability reports or to inquire about parts that are not included. For more information, view our Automotive and Transportation page
| Part Number | Package | Temp | Price (1-99) |
Price (1k)* |
RoHS | |
|---|---|---|---|---|---|---|
| LTC2448IUHF#PBF | 5x7 QFN-38 | I | $10.15 | $8.25 | Yes | |
| LTC2448IUHF#TRPBF | 5x7 QFN-38 | I | $8.35 | Yes | ||
| Buy Now • Request Samples | ||||||
Applications
- High Speed Multiplexing
- Weight Scales
- Auto Ranging 6-Digit DVMs
- Direct Temperature Measurement
- High Speed Data Acquisition
People Who Viewed This Product Also Viewed
- LTC2449 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
- LTC6655 - 0.25ppm Noise, Low Drift Precision References
- LTC2440 - 24-Bit High Speed Differential Delta Sigma ADC with Selectable Speed/Resolution
- LTC2442 - 24-Bit High Speed 4-Channel Delta Sigma ADC with Integrated Amplifier
- LT3080 - Adjustable 1.1A Single Resistor Low Dropout Regulator
- LT5400 - Quad Matched Resistor Network
- LTC2444 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
- LTC2400 - 24-Bit µPower No Latency Delta-Sigma ADC in SO-8
- LTC2983 - Multi-Sensor High Accuracy Digital Temperature Measurement System
- LTC2498 - 24-Bit 8-/16-Channel Delta Sigma ADC with Easy Drive Input Current Cancellation
Product Notifications
Please login to your MyLinear account for notifications of datasheet updates, new document releases and LTspice model announcements for your favorite products. If you do not have a MyLinear account you may Sign Up Now.
Forgot your password? Click here.
Need help? Email mylinear@linear.com with questions and comments.
Design Tools
Linduino
Linduino is an Arduino compatible platform for developing and distributing firmware libraries and code for SPI and I²C-compatible integrated circuits. The Linduino One board interfaces to more than 300 QuikEval demonstration cards, supporting a variety of product types including analog-to-digital converters (ADCs), digital-to-analog converters (DACs), power monitors, and more. Firmware libraries for individual devices are written in C and designed to be portable to a wide variety of processors and microcontrollers. Each library has a demonstration program that can be uploaded to the Linduino One platform to allow the circuit and software to be quickly and easily verified.
Code
Linduino is Linear Technology's Arduino compatible system for developing and distributing firmware libraries and example code for Linear Technology’s integrated circuits. The code below can be downloaded or copied and pasted into your project. Please visit the Linduino Home Page for demo board, manual and setup information.
This part is Family Supported: There is example code available for a part in this family. The code may require some changes to work with this specific part, however it still provides many good examples of how certain interactions should take place. The code below may rely on other drivers available in the full library.
Download LTC2449 - DC742A Linduino .INO File
/*!
Linear Technology DC742A Demonstration Board.
LTC2449: 24-Bit, 16-Channel Delta Sigma ADC with Selectable Speed/Resolution.
Linear Technology DC979A Demonstration Board.
LTC2442: 24-Bit, 4-Channel Delta Sigma ADC with Integrated Amplifier
Linear Technology DC845A Demonstration Board.
LTC2448: 24-Bit, 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
@verbatim
NOTES
Setup:
Set the terminal baud rate to 115200 and select the newline terminator. Equipment
required is a precision voltage source and a precision voltmeter. Additionally,
an external power supply is required to provide a negative voltage for Amp V-.
Set it to anywhere from -1V to -5V. Set Amp V+ to Vcc. Ensure the COM and REF-
pins are connected to ground. The REF+ pin should be connected to +5V.
How to test Single-Ended mode:
The voltage source should be connected to the ADC such that the negative lead is
connected to the COM(common) pin. The positive lead may be connected to any
channel input. Ensure voltage is within analog input voltage range -0.3 to 2.5V.
How to test Differential Mode:
The voltage source should be connected with positive and negative leads to paired
channels. The voltage source negative output must also be connected to the COM
pin in order to provide a ground-referenced voltage. Ensure voltage is within
analog input voltage range -0.3V to +2.5V. Swapping input voltages results in a
reversed polarity reading.
How to calibrate:
Apply 100mV CH0 with respect to COM. Next, measure this voltage with a precise
voltmeter and enter this value. (This takes the reading.) Now apply approximately
2.40 volts to CH0. Measure this voltage with a precise voltmeter and enter this
value. Calibration is now stored in EEPROM. Upon start-up the calibration values
will be restored.
USER INPUT DATA FORMAT:
decimal : 1024
hex : 0x400
octal : 02000 (leading 0 "zero")
binary : B10000000000
float : 1024.0
@endverbatim
http://www.linear.com/product/LTC2449
http://www.linear.com/product/LTC2442
http://www.linear.com/product/LTC2448
http://www.linear.com/product/LTC2449#demoboards
http://www.linear.com/product/LTC2442#demoboards
http://www.linear.com/product/LTC2448#demoboards
REVISION HISTORY
$Revision: 4776 $
$Date: 2016-03-14 11:18:29 -0700 (Mon, 14 Mar 2016) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC2449
*/
#include <Arduino.h>
#include <stdint.h>
#include "Linduino.h"
#include "LT_SPI.h"
#include "UserInterface.h"
#include "LT_I2C.h"
#include "QuikEval_EEPROM.h"
#include "LTC2449.h"
#include <SPI.h>
#include <Wire.h>
// Function Declaration
void print_title(); // Print the title block
void print_prompt(); // Prompt the user for an input command
void print_user_command(uint8_t menu); // Display selected differential channels
void store_calibration(); // Store the ADC calibration to the EEPROM
int8_t restore_calibration(); // Read the calibration from EEPROM, return 1 if successful, 0 if not
int8_t menu_1_read_single_ended();
int8_t menu_2_read_differential();
int8_t menu_3_calibrate();
void menu_4_set_OSR();
void menu_5_set_1X2X();
void menu_6_en_dis_cal();
// Global variables
static uint8_t demo_board_connected; //!< Set to 1 if the board is connected
static int16_t OSR_mode = LTC2449_OSR_32768; //!< The LTC2449 OSR setting
static int16_t two_x_mode = LTC2449_SPEED_1X; //!< The LTC2449 2X Mode settings
static float LTC2449_lsb = 9.3132258E-9; //!< Ideal LSB voltage for a perfect part
static int32_t LTC2449_offset_code = 0; //!< Ideal offset for a perfect part
// Constants
//! Lookup table to build the command for single-ended mode
const uint16_t BUILD_COMMAND_SINGLE_ENDED[16] = {LTC2449_CH0, LTC2449_CH1, LTC2449_CH2, LTC2449_CH3,
LTC2449_CH4, LTC2449_CH5, LTC2449_CH6, LTC2449_CH7,
LTC2449_CH8, LTC2449_CH9, LTC2449_CH10, LTC2449_CH11,
LTC2449_CH12, LTC2449_CH13, LTC2449_CH14, LTC2449_CH15
}; //!< Builds the command for single-ended mode
//! Lookup table to build the command for differential mode
const uint16_t BUILD_COMMAND_DIFF[16] = {LTC2449_P0_N1, LTC2449_P2_N3, LTC2449_P4_N5, LTC2449_P6_N7,
LTC2449_P8_N9, LTC2449_P10_N11, LTC2449_P12_N13, LTC2449_P14_N15,
LTC2449_P1_N0, LTC2449_P3_N2, LTC2449_P5_N4, LTC2449_P7_N6,
LTC2449_P9_N8, LTC2449_P11_N10, LTC2449_P13_N12, LTC2449_P15_N14
}; //!< Build the command for differential mode
//! Lookup table to build the command for OSR
const uint16_t BUILD_OSR_COMMAND[10] = {LTC2449_OSR_32768, LTC2449_OSR_64, LTC2449_OSR_128, LTC2449_OSR_256, LTC2449_OSR_512,
LTC2449_OSR_1024, LTC2449_OSR_2048, LTC2449_OSR_4096, LTC2449_OSR_8192, LTC2449_OSR_16384
}; //!< Build the command for OSR
//! Lookup table to build 1X / 2X bits
const uint16_t BUILD_1X_2X_COMMAND[2] = {LTC2449_SPEED_1X, LTC2449_SPEED_2X}; //!< Build the command for 1x or 2x mode
//! MISO timeout constant
const uint16_t MISO_TIMEOUT = 1000;
//! Initialize Linduino
void setup()
{
char demo_name[]="DC742"; // Demo Board Name stored in QuikEval EEPROM
quikeval_SPI_init(); // Configure the spi port for 4MHz SCK
quikeval_SPI_connect(); // Connect SPI to main data port
quikeval_I2C_init(); // Configure the EEPROM I2C port for 100kHz
Serial.begin(115200); // Initialize the serial port to the PC
print_title();
demo_board_connected = discover_demo_board(demo_name);
if (demo_board_connected)
{
restore_calibration();
print_prompt();
}
}
//! Repeats Linduino loop
void loop()
{
int16_t user_command; // The user input command
uint8_t acknowledge = 0;
if (demo_board_connected)
{
if (Serial.available()) // Check for user input
{
user_command = read_int(); // Read the user command
if (user_command != 'm')
Serial.println(user_command); // Prints the user command to com port
Serial.flush();
switch (user_command)
{
case 1:
acknowledge |= menu_1_read_single_ended();
break;
case 2:
acknowledge |= menu_2_read_differential();
break;
case 3:
acknowledge |= menu_3_calibrate();
break;
case 4:
menu_4_set_OSR();
break;
case 5:
menu_5_set_1X2X();
break;
case 6:
menu_6_en_dis_cal();
break;
default:
Serial.println("Incorrect Option");
}
if (acknowledge)
Serial.println("***** SPI ERROR *****");
Serial.print(F("\n*************************\n"));
print_prompt();
}
}
}
// Function Definitions
//! Prints the title block when program first starts.
void print_title()
{
Serial.print(F("\n*****************************************************************\n"));
Serial.print(F("* DC742A Demonstration Program *\n"));
Serial.print(F("* *\n"));
Serial.print(F("* This program demonstrates how to send data and receive data *\n"));
Serial.print(F("* from the 24-bit ADC. *\n"));
Serial.print(F("* *\n"));
Serial.print(F("* *\n"));
Serial.print(F("* Set the baud rate to 115200 and select the newline terminator.*\n"));
Serial.print(F("* *\n"));
Serial.print(F("*****************************************************************\n"));
}
//! Prints main menu.
void print_prompt()
{
Serial.print(F("\n1-Read Single-Ended\n"));
Serial.print(F("2-Read Differential\n"));
Serial.print(F("3-Calibration\n"));
Serial.print(F("4-Oversample Ratio Settings\n"));
Serial.print(F("5-2X Mode Settings\n"));
Serial.print(F("6-Enable / Disable Calibration Key\n\n"));
Serial.print(F("Enter a Command: "));
}
//! Display selected differential channels. Displaying single-ended channels is
//! straightforward; not so with differential because the inputs can take either polarity.
void print_user_command(uint8_t menu)
{
switch (menu)
{
case 0:
Serial.print("0P-1N");
break;
case 1:
Serial.print("2P-3N");
break;
case 2:
Serial.print("4P-5N");
break;
case 3:
Serial.print("6P-7N");
break;
case 4:
Serial.print("8P-9N");
break;
case 5:
Serial.print("10P-11N");
break;
case 6:
Serial.print("12P-13N");
break;
case 7:
Serial.print("14P-15N");
break;
case 8:
Serial.print("1P-0N");
break;
case 9:
Serial.print("3P-2N");
break;
case 10:
Serial.print("5P-4N");
break;
case 11:
Serial.print("7P-6N");
break;
case 12:
Serial.print("9P-8N");
break;
case 13:
Serial.print("11P-10N");
break;
case 14:
Serial.print("13P-12N");
break;
case 15:
Serial.print("15P-14N");
break;
}
Serial.print(": ");
}
//! Read channels in single-ended mode
//! @return 0 if successful, 1 is failure
int8_t menu_1_read_single_ended()
{
uint16_t adc_command; // The LTC2449 command word
int16_t user_command; // The user input command
uint32_t adc_code = 0; // The LTC2449 code
float adc_voltage; // The LTC2449 voltage
while (1)
{
Serial.print(F("*************************\n\n"));
Serial.print(F("0-CH0 8-CH8\n"));
Serial.print(F("1-CH1 9-CH9\n"));
Serial.print(F("2-CH2 10-CH10\n"));
Serial.print(F("3-CH3 11-CH11\n"));
Serial.print(F("4-CH4 12-CH12\n"));
Serial.print(F("5-CH5 13-CH13\n"));
Serial.print(F("6-CH6 14-CH14\n"));
Serial.print(F("7-CH7 15-CH15\n"));
Serial.print(F("16-ALL\n"));
Serial.print(F("m-Main Menu\n"));
Serial.print("Enter a Command: ");
user_command = read_int(); // Read the single command
if (user_command == 'm')
return(0);
Serial.println(user_command);
if (user_command == 16)
{
Serial.print(F("ALL\n"));
adc_command = BUILD_COMMAND_SINGLE_ENDED[0] | OSR_mode | two_x_mode; // Build ADC command for channel 0
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out last reading
for (int8_t x = 0; x <= 15; x++) // Read all channels in single-ended mode
{
if (two_x_mode)
{
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out an extra reading in 2x mode
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
}
adc_command = BUILD_COMMAND_SINGLE_ENDED[(x + 1) % 16] | OSR_mode | two_x_mode;
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code);
adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code);
Serial.print(" ****");
Serial.print("CH");
Serial.print(x);
Serial.print(": ");
Serial.print(adc_voltage, 4);
Serial.print(F("V\n\n"));
}
}
else
{
adc_command = BUILD_COMMAND_SINGLE_ENDED[user_command] | OSR_mode | two_x_mode;
Serial.print("\nADC Command: B");
Serial.println(adc_command, BIN);
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out last reading
if (two_x_mode)
{
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out an extra reading in 2x mode
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
}
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Now we're ready to read the desired data
Serial.print("Received Code: 0x");
Serial.println(adc_code, HEX);
adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code);
Serial.print(" ****");
Serial.print("CH");
Serial.print(user_command);
Serial.print(": ");
Serial.print(adc_voltage, 4);
Serial.print(F("V\n\n"));
}
}
return(0);
}
//! Read channels in differential mode
//! @return 0 if successful, 1 is failure
int8_t menu_2_read_differential()
{
int8_t y; // Offset into differential channel array to select polarity
uint16_t adc_command; // The LTC2449 command word
int16_t user_command; // The user input command
uint32_t adc_code = 0; // The LTC2449 code
float adc_voltage; // The LTC2449 voltage
while (1)
{
Serial.print(F("\n*************************\n\n")); // Display differential menu
Serial.print(F("0-0P-1N 8-1P-0N\n"));
Serial.print(F("1-2P-3N 9-3P-2N\n"));
Serial.print(F("2-4P-5N 10-5P-4N\n"));
Serial.print(F("3-6P-7N 11-7P-6N\n"));
Serial.print(F("4-8P-9N 12-9P-8N\n"));
Serial.print(F("5-10P-11N 13-11P-10N\n"));
Serial.print(F("6-12P_13N 14-13P-12N\n"));
Serial.print(F("7-14P-15N 15-15P-14N\n"));
Serial.print(F("16-ALL Even_P-Odd_N\n"));
Serial.print(F("17-ALL Odd_P-Even_N\n"));
Serial.print(F("m-Main Menu\n"));
user_command = read_int(); // Read the single command
if (user_command == 'm')
return(0);
Serial.println(user_command);
if ((user_command == 16) || (user_command == 17))
{
if (user_command == 16)
{
Serial.print(F("ALL Even_P-Odd_N\n")); // Cycles through options 0-7
y = 0;
}
if (user_command == 17)
{
Serial.print(F("ALL Odd_P-Even_N\n")); // Cycles through options 8-15
y = 8;
}
adc_command = BUILD_COMMAND_DIFF[y] | OSR_mode | two_x_mode; // Build the channel 0 and 1 for differential mode
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out reading
for (int8_t x = 0; x < 7; x++) // Read all channels in differential mode. All even channels are positive and odd channels are negative
{
if (two_x_mode)
{
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out an extra reading in 2x mode
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
}
adc_command = BUILD_COMMAND_DIFF[((x + 1) % 8) + y] | OSR_mode | two_x_mode;
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code);
Serial.print("Received Code: 0x");
Serial.println(adc_code, HEX);
adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code);
Serial.print("\n ****");
print_user_command(x + y);
Serial.print(": ");
Serial.print(adc_voltage, 4);
Serial.print(F("V\n"));
}
}
else
{
// Reads and displays a selected channel
adc_command = BUILD_COMMAND_DIFF[user_command] | OSR_mode | two_x_mode;
Serial.print("ADC Command: B");
Serial.println(adc_command, BIN);
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out last reading
if (two_x_mode)
{
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out an extra reading in 2x mode
}
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code);
Serial.print("Received Code: 0x");
Serial.println(adc_code, HEX);
adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code);
Serial.print("\n ****");
print_user_command(user_command);
Serial.print(adc_voltage, 4);
Serial.print(F("V\n"));
}
}
return(0);
}
//! Calibrate ADC given two known inputs
//! @return 0 if successful, 1 is failure
int8_t menu_3_calibrate()
{
uint16_t adc_command; // The LTC2449 command word
int16_t user_command; // The user input command
uint32_t adc_code = 0; // The LTC2449 code
float zero_voltage; // Measured cal voltage
float fs_voltage; // Measured cal voltage
uint32_t zero_code; // Cal zero code
uint32_t fs_code; // Cal full scale code
// Calibration
Serial.println("Apply 100mV to CH0 with respect to COM");
Serial.println("or apply a voltage for the lower point in two point calibration");
Serial.print("Enter the measured input voltage:");
zero_voltage = read_float();
Serial.println(zero_voltage, 6);
// Set OSR to 32768
adc_command = BUILD_OSR_COMMAND[9]; // Build OSR command
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Send OSR command
adc_command = BUILD_COMMAND_SINGLE_ENDED[0] | LTC2449_OSR_32768 | LTC2449_SPEED_1X; // Build ADC command byte for voltage input
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throw away previous reading
delay(100);
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &zero_code); // Measure zero
Serial.println("Apply ~2.40V input voltage to CH0.");
Serial.println("Enter the measured input voltage:");
fs_voltage = read_float();
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throw away previous reading
delay(100);
if (LTC2449_EOC_timeout(LTC2449_CS, MISO_TIMEOUT)) // Checks for EOC with a timeout
return(1);
LTC2449_read(LTC2449_CS, adc_command, &fs_code); // Measure full scale
LTC2449_cal_voltage(zero_code, fs_code, zero_voltage, fs_voltage, <C2449_lsb, <C2449_offset_code);
Serial.print("ADC offset : ");
Serial.println(LTC2449_offset_code);
Serial.print(" ADC lsb : ");
Serial.print(LTC2449_lsb*1.0e9, 4);
Serial.println("nV (32-bits)");
store_calibration();
return(0);
}
//! Set Oversample Ratio (OSR)
//! @return void
void menu_4_set_OSR()
{
int16_t user_command; // The user input command
// Oversample Ratio Settings
Serial.print(F("Oversample Ratio Settings\n")); // Display OSR menu
Serial.print(F("1-64\n"));
Serial.print(F("2-128\n"));
Serial.print(F("3-256\n"));
Serial.print(F("4-512\n"));
Serial.print(F("5-1024\n"));
Serial.print(F("6-2048\n"));
Serial.print(F("7-4096\n"));
Serial.print(F("8-8192\n"));
Serial.print(F("9-16384\n"));
Serial.print(F("10-32768\n"));
Serial.print("\nEnter a Command: ");
user_command = read_int();
Serial.println(user_command);
OSR_mode = BUILD_OSR_COMMAND[user_command]; // Build OSR command
Serial.print("\nADC OSR Command: B");
Serial.println(OSR_mode, BIN);
}
//! Set 1X or 2X mode
//! @return void
void menu_5_set_1X2X()
{
int16_t user_command; // The user input command
// 2X Mode
Serial.print(F("2X Mode Settings\n\n"));
Serial.print(F("0-Disable\n"));
Serial.print(F("1-Enable\n"));
Serial.print(F("Enter a Command: "));
user_command = read_int();
Serial.println(user_command);
if (user_command == 0)
{
two_x_mode = LTC2449_SPEED_1X;
Serial.print(F("2X Mode Disabled\n"));
}
else
{
two_x_mode = LTC2449_SPEED_2X;
Serial.print(F("2X Mode Enabled\n"));
}
}
//! Store measured calibration parameters to nonvolatile EEPROM on demo board
//! @return void
void store_calibration()
// store the ADC calibration to the EEPROM
{
eeprom_write_int16(EEPROM_I2C_ADDRESS, EEPROM_CAL_KEY, EEPROM_CAL_STATUS_ADDRESS); // Cal key
eeprom_write_int32(EEPROM_I2C_ADDRESS, LTC2449_offset_code, EEPROM_CAL_STATUS_ADDRESS+2); // Offset
eeprom_write_float(EEPROM_I2C_ADDRESS, LTC2449_lsb, EEPROM_CAL_STATUS_ADDRESS+6); // LSB
Serial.println("Calibration Stored to EEPROM");
}
//! Enable / Disable calibration without actually touching stored calibration values
//! @return void
void menu_6_en_dis_cal()
{
int16_t user_command; // The user input command
Serial.println(F("Enable / Disable calibration key"));
Serial.println(F("0-Disable\n"));
Serial.println(F("1-Enable - use ONLY if you know a calibration has been performed previously\n"));
Serial.println(F("Enter a Command: "));
user_command = read_int();
if (user_command == 0)
{
eeprom_write_int16(EEPROM_I2C_ADDRESS, 0xFFFF, EEPROM_CAL_STATUS_ADDRESS); // Reset cal key
Serial.print(F("Calibration Disabled\n"));
}
else
{
eeprom_write_int16(EEPROM_I2C_ADDRESS, EEPROM_CAL_KEY, EEPROM_CAL_STATUS_ADDRESS); // Set cal key
Serial.print(F("Calibration Enabled\n"));
}
restore_calibration();
}
//! Read stored calibration parameters from nonvolatile EEPROM on demo board
//! @return return 1 if successful, 0 if not
int8_t restore_calibration()
// read the calibration from EEPROM
{
int16_t cal_key;
// read the cal key from the EEPROM
eeprom_read_int16(EEPROM_I2C_ADDRESS, &cal_key, EEPROM_CAL_STATUS_ADDRESS);
if (cal_key == EEPROM_CAL_KEY)
{
// calibration has been stored, read offset and lsb
eeprom_read_int32(EEPROM_I2C_ADDRESS, <C2449_offset_code, EEPROM_CAL_STATUS_ADDRESS+2); // offset
eeprom_read_float(EEPROM_I2C_ADDRESS, <C2449_lsb, EEPROM_CAL_STATUS_ADDRESS+6); // lsb
Serial.println("Calibration Restored");
return(1);
}
else
{
Serial.println("Calibration not found");
return(0);
}
}
Download LTC2449 Linduino .CPP File
/*!
LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution.
LTC2442: 24-Bit, 4-Channel Delta Sigma ADC with Integrated Amplifier
LTC2448: 24-Bit, 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
@verbatim
The LTC2444/LTC2445/LTC2448/LTC2449 are 8-/16-channel (4-/8-differential)
high speed 24-bit No Latency Delta Sigma ADCs. They use a proprietary
delta-sigma architecture enabling variable speed/resolution. Through a
simple 4-wire serial interface, ten speed/resolution combinations
6.9Hz/280nVRMS to 3.5kHz/25uVRMS (4kHz with external oscillator) can be
selected with no latency between conversion results or shift in DC accuracy
(offset, full-scale, linearity, drift). Additionally, a 2X speed mode can
be selected enabling output rates up to 7kHz (8kHz if an external
oscillator is used) with one cycle latency.
@endverbatim
http://www.linear.com/product/LTC2449
http://www.linear.com/product/LTC2442
http://www.linear.com/product/LTC2448
http://www.linear.com/product/LTC2449#demoboards
http://www.linear.com/product/LTC2442#demoboards
http://www.linear.com/product/LTC2448#demoboards
REVISION HISTORY
$Revision: 4776 $
$Date: 2016-03-14 11:18:29 -0700 (Mon, 14 Mar 2016) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
//! @defgroup LTC2449 LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
/*! @file
@ingroup LTC2449
Library for LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
*/
#include <stdint.h>
#include <Arduino.h>
#include "Linduino.h"
#include "LT_SPI.h"
#include "LTC2449.h"
#include <SPI.h>
//! Define the SPI CS pin
#ifndef LTC2449_CS
#define LTC2449_CS QUIKEVAL_CS
#endif
int8_t LTC2449_EOC_timeout(uint8_t cs, uint16_t miso_timeout)
// Checks for EOC with a specified timeout (ms)
{
uint16_t timer_count = 0; // Timer count for MISO
output_low(cs); //! 1) Pull CS low
while (1) //! 2) Wait for SDO (MISO) to go low
{
if (input(MISO) == 0) break; //! 3) If SDO is low, break loop
if (timer_count++>miso_timeout) // If timeout, return 1 (failure)
{
output_high(cs); // Pull CS high
return(1);
}
else
delay(1);
}
output_high(cs); // Pull CS high
return(0);
}
// Reads from LTC2449.
void LTC2449_read(uint8_t cs, uint16_t adc_command, uint32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC2449 data and command
LT_union_int16_2bytes temp_comm;
temp_comm.LT_int16 = adc_command;
command.LT_byte[3] = temp_comm.LT_byte[1];
command.LT_byte[2] = temp_comm.LT_byte[0];
command.LT_byte[1] = 0;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
*adc_code = data.LT_int32;
}
// Calculates the voltage corresponding to an adc code, given lsb weight (in volts) and the calibrated
// adc offset code (zero code that is subtracted from adc_code).
float LTC2449_code_to_voltage(int32_t adc_code, float LTC2449_lsb, int32_t LTC2449_offset_code)
{
float adc_voltage;
adc_code -= 536870912; //! 1) Converts offset binary to binary
adc_voltage=(float)(adc_code+LTC2449_offset_code)*LTC2449_lsb; //! 2) Calculate voltage from ADC code, lsb, offset.
return(adc_voltage);
}
// Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
void LTC2449_cal_voltage(int32_t zero_code, int32_t fs_code, float zero_voltage, float fs_voltage, float *LTC2449_lsb, int32_t *LTC2449_offset_code)
{
zero_code -= 536870912; //! 1) Converts zero code from offset binary to binary
fs_code -= 536870912; //! 2) Converts full scale code from offset binary to binary
float temp_offset;
*LTC2449_lsb = (fs_voltage-zero_voltage)/((float)(fs_code - zero_code)); //! 3) Calculate the LSB
temp_offset = (zero_voltage/ *LTC2449_lsb) - zero_code; //! 4) Calculate Unipolar offset
temp_offset = (temp_offset > (floor(temp_offset) + 0.5)) ? ceil(temp_offset) : floor(temp_offset); //! 5) Round
*LTC2449_offset_code = (int32_t)temp_offset; //! 6) Cast as int32_t
}
Download LTC2449 Linduino Header File
/*!
LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution.
LTC2442: 24-Bit, 4-Channel Delta Sigma ADC with Integrated Amplifier
LTC2448: 24-Bit, 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
@verbatim
The LTC2444/LTC2445/LTC2448/LTC2449 are 8-/16-channel (4-/8-differential)
high speed 24-bit No Latency Delta Sigma ADCs. They use a proprietary
delta-sigma architecture enabling variable speed/resolution. Through a
simple 4-wire serial interface, ten speed/resolution combinations
6.9Hz/280nVRMS to 3.5kHz/25uVRMS (4kHz with external oscillator) can be
selected with no latency between conversion results or shift in DC accuracy
(offset, full-scale, linearity, drift). Additionally, a 2X speed mode can
be selected enabling output rates up to 7kHz (8kHz if an external
oscillator is used) with one cycle latency.
SPI DATA FORMAT (MSB First):
Byte #1 Byte #2
Data Out : !EOC DMY SIG D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16
Data In : 1 0 EN SGL OS S2 S1 S0 OSR3 OSR2 OSR1 OSR1 SPD X X X
Byte #3 Byte #4
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 *D3 *D2 *D1 *D0
X X X X X X X X X X X X X X X X
!EOC : End of Conversion Bit (Active Low)
DMY : Dummy Bit (Always 0)
SIG : Sign Bit (1-data positive, 0-data negative)
Dx : Data Bits
*Dx : Data Bits Below lsb
EN : Enable Bit (0-keep previous mode, 1-change mode)
SGL : Enable Single-Ended Bit (0-differential, 1-single-ended)
OS : ODD/Sign Bit
Sx : Address Select Bit
0SRX : Over Sampling Rate Bits
SPD : Double Output Rate Select Bit (0-Normal rate, auto-calibration on, 2x rate, auto_calibration off)
Command Byte #1
1 0 EN SGL OS S2 S1 S0 Comments
1 0 0 X X X X X Keep Previous Mode
1 0 1 0 X X X X Differential Mode
1 0 1 1 X X X X Single-Ended Mode
| Coversion Rate | RMS | ENOB | OSR | Latency
Command Byte #2 |Internal | External | Noise | | |
| 9MHz | 10.24MHz | | | |
OSR3 OSR2 OSR1 OSR1 SPD | Clock | Clock | | | |
0 0 0 0 0 Keep Previous Speed/Resolution
0 0 0 1 0 3.52kHz 4kHz 23uV 17 64 none
0 0 1 0 0 1.76kHz 2kHz 3.5uV 20.1 128 none
0 0 1 1 0 880Hz 1kHz 2uV 21.3 256 none
0 1 0 0 0 440Hz 500Hz 1.4uV 21.8 512 none
0 1 0 1 0 220Hz 250Hz 1uV 22.4 1024 none
0 1 1 0 0 110Hz 125Hz 750nV 22.9 2048 none
0 1 1 1 0 55Hz 62.5Hz 510nV 23.4 4096 none
1 0 0 0 0 27.5Hz 31.25Hz 375nV 24 8192 none
1 0 0 1 0 13.75Hz 15.625Hz 250nV 24.4 16384 none
1 1 1 1 0 6.87kHz 7.8125Hz 200nV 24.6 32768 none
0 0 0 0 1 Keep Previous Speed/Resolution
OSR3 OSR2 OSR1 OSR1 1 2X Mode *all clock speeds double
Example Code:
Read Channel 0 in Single-Ended with OSR of 65536
uint16_t miso_timeout = 1000;
adc_command = LTC2449_CH0 | LTC2449_OSR_32768 | LTC2449_SPEED_2X; // Build ADC command for channel 0
// OSR = 32768*2 = 65536
if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC
return; // Exit if timeout is reached
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out last reading
if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC
return; // Exit if timeout is reached
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Obtains the current reading and stores to adc_code variable
// Convert adc_code to voltage
adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code);
@endverbatim
http://www.linear.com/product/LTC2449
http://www.linear.com/product/LTC2442
http://www.linear.com/product/LTC2448
http://www.linear.com/product/LTC2449#demoboards
http://www.linear.com/product/LTC2442#demoboards
http://www.linear.com/product/LTC2448#demoboards
REVISION HISTORY
$Revision: 4776 $
$Date: 2016-03-14 11:18:29 -0700 (Mon, 14 Mar 2016) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC2449
Header for LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
*/
#ifndef LTC2449_H
#define LTC2449_H
//! Define the SPI CS pin
#ifndef LTC2449_CS
#define LTC2449_CS QUIKEVAL_CS
#endif
/*! @name Mode Configuration
@{
*/
#define LTC2449_KEEP_PREVIOUS_MODE 0x8000
#define LTC2449_KEEP_PREVIOUS_SPEED_RESOLUTION 0x0000
#define LTC2449_SPEED_1X 0x0000
#define LTC2449_SPEED_2X 0x0008
/*!
@}
*/
/*! @name Single-Ended Channels Configuration
@{ */
#define LTC2449_CH0 0xB000
#define LTC2449_CH1 0xB800
#define LTC2449_CH2 0xB100
#define LTC2449_CH3 0xB900
#define LTC2449_CH4 0xB200
#define LTC2449_CH5 0xBA00
#define LTC2449_CH6 0xB300
#define LTC2449_CH7 0xBB00
#define LTC2449_CH8 0xB400
#define LTC2449_CH9 0xBC00
#define LTC2449_CH10 0xB500
#define LTC2449_CH11 0xBD00
#define LTC2449_CH12 0xB600
#define LTC2449_CH13 0xBE00
#define LTC2449_CH14 0xB700
#define LTC2449_CH15 0xBF00
/*! @} */
/*! @name Differential Channel Configuration
@{ */
#define LTC2449_P0_N1 0xA000
#define LTC2449_P1_N0 0xA800
#define LTC2449_P2_N3 0xA100
#define LTC2449_P3_N2 0xA900
#define LTC2449_P4_N5 0xA200
#define LTC2449_P5_N4 0xAA00
#define LTC2449_P6_N7 0xA300
#define LTC2449_P7_N6 0xAB00
#define LTC2449_P8_N9 0xA400
#define LTC2449_P9_N8 0xAC00
#define LTC2449_P10_N11 0xA500
#define LTC2449_P11_N10 0xAD00
#define LTC2449_P12_N13 0xA600
#define LTC2449_P13_N12 0xAE00
#define LTC2449_P14_N15 0xA700
#define LTC2449_P15_N14 0xAF00
/*! @} */
/*Commands
Construct a channel / resolution control word by bitwise ORing one choice from the channel configuration
and one choice from the Oversample ratio configuration. You can also enable 2Xmode, which will increase
sample rate by a factor of 2 but introduce one cycle of latency.
Example - read channel 3 single-ended at OSR2048, with 2X mode enabled.
adc_command = (LTC2449_CH3 | LTC2449_OSR_2048) | LTC2449_SPEED_2X;
*/
/*! @name Oversample Ratio (OSR) Commands
@{ */
#define LTC2449_OSR_64 0xA010
#define LTC2449_OSR_128 0xA020
#define LTC2449_OSR_256 0xA030
#define LTC2449_OSR_512 0xA040
#define LTC2449_OSR_1024 0xA050
#define LTC2449_OSR_2048 0xA060
#define LTC2449_OSR_4096 0xA070
#define LTC2449_OSR_8192 0xA080
#define LTC2449_OSR_16384 0xA090
#define LTC2449_OSR_32768 0xA0F0
/*! @}*/
//! Checks for EOC with a specified timeout
//! @return Returns 0=successful, 1=unsuccessful (exceeded timeout)
int8_t LTC2449_EOC_timeout(uint8_t cs, //!< Chip Select pin
uint16_t miso_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC2449.
//! @return void
void LTC2449_read(uint8_t cs, //!< Chip Select pin
uint16_t adc_command, //!< 2 byte command written to LTC2449
uint32_t *adc_code //!< 4 byte conversion code read from LTC2449
);
//! Calculates the voltage corresponding to an adc code, given lsb weight (in volts) and the calibrated
//! ADC offset code (zero code that is subtracted from adc_code).
//! @return Returns voltage calculated from ADC code.
float LTC2449_code_to_voltage(int32_t adc_code, //!< Code read from adc
float LTC2449_lsb, //!< LSB weight (in volts)
int32_t LTC2449_offset_code //!< The calibrated offset code (This is the adc code zero code that will be subtraced from adc_code)
);
//! Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
//! @return Void
void LTC2449_cal_voltage(int32_t zero_code, //!< Measured code with the inputs shorted to ground
int32_t fs_code, //!< Measured code at nearly full-scale
float zero_voltage, //!< Measured zero voltage
float fs_voltage, //!< Voltage measured at input (with voltmeter) when fs_code was read from adc
float *LTC2449_lsb, //!< Overwritten with lsb weight (in volts)
int32_t *LTC2449_offset_code //!< Overwritten with offset code (zero code)
);
#endif // LTC2449_HTechnical Support
- For immediate technical assistance, contact your local sales office or distributor or call 1-800-4-LINEAR (US customers only) or 408-432-1900.
- For less urgent requests, please complete our Technical Support Request Form. Please allow 2-3 business days for reply.
