LTC2440 - 24-Bit High Speed Differential Delta Sigma ADC with Selectable Speed/Resolution
Features
- Up to 3.5kHz Output Rate
- Selectable Speed/Resolution
- 2µVRMS Noise at 880Hz Output Rate
- 200nVRMS Noise at 6.9Hz Output Rate with Simultaneous 50/60Hz Rejection
- 0.0005% INL, No Missing Codes
- Autosleep Enables 20µA Operation at 6.9Hz
- < 5µV Offset (4.5V < VCC < 5.5V, –40°C to 85°C)
- Differential Input and Differential Reference with GND to VCC Common Mode Range
- No Latency, Each Conversion is Accurate Even After an Input Step
- Internal Oscillator—No External Components
- Pin Compatible with the LTC2410
- 24-Bit ADC in Narrow 16-Lead SSOP Package
Typical Application
Description
The LTC2440 is a high speed 24-bit No Latency Delta Sigma ADC with 5ppm INL and 5µV offset. It uses proprietary Delta Sigma architecture enabling variable speed and resolution with no latency. Ten speed/resolution combinations (6.9Hz/ 200nVRMS to 3.5kHz/25µVRMS) are programmed through a simple serial interface. Alternatively, by tying a single pin HIGH or LOW, a fast (880Hz/2µVRMS) or ultralow noise (6.9Hz, 200nVRMS, 50/60Hz rejection) speed/resolution combination can be easily selected. The accuracy (offset, full-scale, linearity, drift) and power dissipation are independent of the speed selected. Since there is no latency, a speed/resolution change may be made between conversions with no degradation in performance.
Following each conversion cycle, the LTC2440 automatically enters a low power sleep state. Power dissipation may be reduced by increasing the duration of this sleep state. For example, running at the 3.5kHz conversion speed but reading data at a 100Hz rate draws 240µA average current (1.1mW) while reading data at a 7Hz output rate draws only 25µA (125µW).The LTC2440 communicates through a flexible 3-wire or 4-wire digital interface that is compatible with the LTC2410 and is available in a narrow 16-lead SSOP package.
Packaging
CAD Symbols and Footprints: The downloadable Zip file below contains the schematic symbol and PCB footprints.
For complete and up to date package information and drawings, please refer to our packaging page
| Part Number | Package | Code | Temp | Package Drawing |
RoHS |
|---|---|---|---|---|---|
| LTC2440CGN#PBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2440CGN#TRPBF | SSOP-16 | GN | C | 05-08-1641 (GN16) | Yes |
| LTC2440IGN#PBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
| LTC2440IGN#TRPBF | SSOP-16 | GN | I | 05-08-1641 (GN16) | Yes |
Order Info
- Part numbers ending in PBF are lead free. Solder plated terminal finish (SnPb) versions are non-standard and special terms and conditions and pricing applies if available. Please contact LTC marketing for information.
- Part numbers containing TR or TRM are shipped in tape and reel or 500 unit mini tape and reel, respectively
- Please refer to our general ordering information or the product datasheet for more details
Package Variations and Pricing
| Part Number | Package | Temp | Price (1-99) |
Price (1k)* |
RoHS | |
|---|---|---|---|---|---|---|
| LTC2440CGN#PBF | SSOP-16 | C | $7.25 | $5.75 | Yes | |
| LTC2440CGN#TRPBF | SSOP-16 | C | $5.81 | Yes | ||
| LTC2440IGN#PBF | SSOP-16 | I | $8.00 | $6.50 | Yes | |
| LTC2440IGN#TRPBF | SSOP-16 | I | $6.56 | Yes | ||
| Buy Now • Request Samples | ||||||
Demo Boards
Linear Technology offers many demo boards free of charge to qualified customers. Contact your local sales office or distributor to inquire about a demo board. Certain demo boards are also available for sale via credit card on this website. Demo boards are for evaluation purposes only. It remains the customer’s responsibility to verify proper and reliable operation in the actual end application.| Part Number | Description | Price | Documentation |
|---|---|---|---|
| DC570A | LTC2440CGN Demo Board | High Speed Delta Sigma ADC, (req DC2026) | $50.00 | |
| Buy Now | |||
Companion Boards
| Part Number | Description | Price | Documentation |
|---|---|---|---|
| DC2026C | Linduino One Isolated USB Demo Board: An Arduino- and QuikEval-Compatible Code Development Platform | $75.00 | |
| Buy Now | |||
Applications
- High Speed Multiplexing
- Weight Scales
- Auto Ranging 6-Digit DVMs
- Direct Temperature Measurement
- High Speed Data Acquisition
People Who Viewed This Product Also Viewed
- LTC6655 - 0.25ppm Noise, Low Drift Precision References
- LTC2400 - 24-Bit µPower No Latency Delta-Sigma ADC in SO-8
- LT5400 - Quad Matched Resistor Network
- LTC2442 - 24-Bit High Speed 4-Channel Delta Sigma ADC with Integrated Amplifier
- LTZ1000 - Ultra Precision Reference
- LT1028 - Ultra Low Noise Precision High Speed Op Amps
- LM399 - Precision Reference
- LT3080 - Adjustable 1.1A Single Resistor Low Dropout Regulator
- LTC2057/LTC2057HV - High Voltage, Low Noise Zero-Drift Operational Amplifier
- LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Product Notifications
Please login to your MyLinear account for notifications of datasheet updates, new document releases and LTspice model announcements for your favorite products. If you do not have a MyLinear account you may Sign Up Now.
Forgot your password? Click here.
Need help? Email mylinear@linear.com with questions and comments.
Design Tools
Linduino
Linduino is an Arduino compatible platform for developing and distributing firmware libraries and code for SPI and I²C-compatible integrated circuits. The Linduino One board interfaces to more than 300 QuikEval demonstration cards, supporting a variety of product types including analog-to-digital converters (ADCs), digital-to-analog converters (DACs), power monitors, and more. Firmware libraries for individual devices are written in C and designed to be portable to a wide variety of processors and microcontrollers. Each library has a demonstration program that can be uploaded to the Linduino One platform to allow the circuit and software to be quickly and easily verified.
Code
Linduino is Linear Technology's Arduino compatible system for developing and distributing firmware libraries and example code for Linear Technology’s integrated circuits. The code below can be downloaded or copied and pasted into your project. Please visit the Linduino Home Page for demo board, manual and setup information.
This part is Code Supported: There is example code available for this part. The code below may rely on other drivers available in the full library.
- LTC2440 - DC570A Linduino.INO File
- LTC2440 - Linduino Header File
- LTC2440 - Linduino.CPP File
- LTC24XX – Linduino Header File
- LTC24XX – Linduino.CPP File
Download LTC2440 - DC570A Linduino.INO File
/*!
Linear Technology DC570A Demonstration Board.
LTC2440: 24-Bit, Differential Delta Sigma ADCs with Selectable Speed/Resolution
@verbatim
NOTES
Setup:
Set the terminal baud rate to 115200 and select the newline terminator. Equipment
required is a precision voltage source and a precision voltmeter. Additionally,
an external power supply is required to provide a negative voltage for Amp V-.
Set it to anywhere from -1V to -5V. Set Amp V+ to Vcc. Ensure the COM and REF-
pins are connected to ground. The REF+ pin should be connected to +5V.
How to test Differential Mode:
The voltage source should be connected with positive and negative leads to paired
channels. The voltage source negative output must also be connected to the COM
pin in order to provide a ground-referenced voltage. Ensure voltage is within
analog input voltage range -0.3V to +2.5V. Swapping input voltages results in a
reversed polarity reading.
USER INPUT DATA FORMAT:
decimal : 1024
hex : 0x400
octal : 02000 (leading 0 "zero")
binary : B10000000000
float : 1024.0
@endverbatim
http://www.linear.com/product/LTC2440
http://www.linear.com/product/LTC2440#demoboards
REVISION HISTORY
$Revision: 3479 $
$Date: 2015-05-22 14:09:44 -0700 (Fri, 22 May 2015) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC2440
*/
#include <Arduino.h>
#include <stdint.h>
#include "Linduino.h"
#include "LT_SPI.h"
#include <SPI.h>
#include "UserInterface.h"
#include "LT_I2C.h"
#include "QuikEval_EEPROM.h"
#include "LTC24XX_general.h"
#include "LTC2440.h"
// Function Declaration
void print_title(); // Print the title block
void print_prompt(); // Prompt the user for an input command
void print_user_command(uint8_t menu); // Display selected differential channels
void menu_1_read_differential();
void menu_2_set_OSR();
// Global variables
static uint8_t demo_board_connected; //!< Set to 1 if the board is connected
static int16_t OSR_mode = LTC2440_OSR_32768; //!< The LTC2440 OSR mode settings
static float LTC2440_vref = 5.0;
//! Initialize Linduino
void setup()
{
char demo_name[]="DC570"; // Demo Board Name stored in QuikEval EEPROM
quikeval_SPI_init(); // Configure the spi port for 4MHz SCK
quikeval_SPI_connect(); // Connect SPI to main data port
quikeval_I2C_init(); // Configure the EEPROM I2C port for 100kHz
Serial.begin(115200); // Initialize the serial port to the PC
print_title();
demo_board_connected = discover_demo_board(demo_name);
if (demo_board_connected)
{
print_prompt();
}
else{
Serial.println(F("EEPROM not detected, will attempt to proceed"));
demo_board_connected = 1;
print_prompt();
}
}
//! Repeats Linduino loop
void loop()
{
int16_t user_command; // The user input command
if (demo_board_connected)
{
if (Serial.available()) // Check for user input
{
user_command = read_int(); // Read the user command
if (user_command != 'm')
Serial.println(user_command); // Prints the user command to com port
Serial.flush();
switch (user_command)
{
case 1:
menu_1_read_differential();
break;
case 2:
menu_set_OSR();
break;
default:
Serial.println(F("Incorrect Option"));
}
Serial.print(F("\n*************************\n"));
print_prompt();
}
}
}
// Function Definitions
//! Prints the title block when program first starts.
void print_title()
{
Serial.print(F("\n*****************************************************************\n"));
Serial.print(F("* DC570A Demonstration Program *\n"));
Serial.print(F("* *\n"));
Serial.print(F("* This program demonstrates how to send data and receive data *\n"));
Serial.print(F("* from the 24-bit ADC. *\n"));
Serial.print(F("* *\n"));
Serial.print(F("* *\n"));
Serial.print(F("* Set the baud rate to 115200 and select the newline terminator.*\n"));
Serial.print(F("* *\n"));
Serial.print(F("*****************************************************************\n"));
}
//! Prints main menu.
void print_prompt()
{
Serial.print(F("\n1-Read Differential\n"));
Serial.print(F("2-OSR Mode Settings\n"));
Serial.print(F("Enter a Command: "));
}
//! Read channels in differential mode
void menu_1_read_differential()
{
uint8_t adc_command; // The LTC2440 command word
int32_t adc_code = 0; // The LTC2440 code
float adc_voltage; // The LTC2440 voltage
uint16_t miso_timeout = 1000; // Used to wait for EOC
adc_command = OSR_mode; // Build the OSR command code
if(!LTC2440_EOC_timeout(LTC2440_CS, miso_timeout)) // Check for EOC
LTC2440_read(LTC2440_CS, adc_command, &adc_code); // Throws out reading
else
{
Serial.println(F("\n ***SPI Error*** \n"));
return;
}
if(!LTC2440_EOC_timeout(LTC2440_CS, miso_timeout)) // Check for EOC
LTC2440_read(LTC2440_CS, adc_command, &adc_code);
else
{
Serial.println(F("\n ***SPI Error*** \n"));
return;
}
Serial.print(F("Received Code: 0x"));
Serial.println(adc_code, HEX);
adc_voltage = LTC2440_code_to_voltage(adc_code, LTC2440_vref);
Serial.print(F("\n ****"));
Serial.print(adc_voltage, 4);
Serial.print(F("V\n"));
}
//! Set the OSR
void menu_set_OSR()
{
int16_t user_command; // The user input command
// OSR Mode
Serial.print(F("OSR Settings\n\n"));
Serial.print(F("0-64\n"));
Serial.print(F("1-128\n"));
Serial.print(F("2-256\n"));
Serial.print(F("3-512\n"));
Serial.print(F("4-1024\n"));
Serial.print(F("5-2048\n"));
Serial.print(F("6-4096\n"));
Serial.print(F("7-8192\n"));
Serial.print(F("8-16384\n"));
Serial.print(F("9-32768\n"));
Serial.print(F("Enter a Command: "));
user_command = read_int();
Serial.println(user_command);
switch(user_command)
{
case 0:
OSR_mode = LTC2440_OSR_64;
break;
case 1:
OSR_mode = LTC2440_OSR_128;
break;
case 2:
OSR_mode = LTC2440_OSR_256;
break;
case 3:
OSR_mode = LTC2440_OSR_512;
break;
case 4:
OSR_mode = LTC2440_OSR_1024;
break;
case 5:
OSR_mode = LTC2440_OSR_2048;
break;
case 6:
OSR_mode = LTC2440_OSR_4096;
break;
case 7:
OSR_mode = LTC2440_OSR_8192;
break;
case 8:
OSR_mode = LTC2440_OSR_16384;
break;
case 9:
OSR_mode = LTC2440_OSR_32768;
break;
}
}
Download LTC2440 - Linduino Header File
/*!
LTC2440: 24-Bit, Differential Delta Sigma ADCs with Selectable Speed/Resolution.
@verbatim
The LTC2440 is a high speed 24-bit No Latency Delta Sigma TM ADC with 5ppm
INL and 5uV offset. It uses proprietary delta-sigma architecture enabling
variable speed and resolution with no latency. Ten speed/resolution
combinations (6.9Hz/200nVRMS to 3.5kHz/25uVRMS) are programmed through a
simple serial interface. Alternatively, by tying a single pin HIGH or
LOW, a fast (880Hz/2uVRMS) or ultralow noise (6.9Hz, 200nVRMS, 50/60Hz
rejection) speed/resolution combination can be easily selected. The
accuracy (offset, full-scale, linearity, drift) and power dissipation are
independent of the speed selected. Since there is no latency, a
speed/resolution change may be made between conversions with no
degradation in performance.
SPI DATA FORMAT (MSB First):
Byte #1 Byte #2
Data Out : !EOC DMY SIG D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16
Data In : OSR4 OSR3 OSR2 OSR1 OSR1 X X X X X X X X X X X
Byte #3 Byte #4
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 *D3 *D2 *D1 *D0
X X X X X X X X X X X X X X X X
!EOC : End of Conversion Bit (Active Low)
DMY : Dummy Bit (Always 0)
SIG : Sign Bit (1-data positive, 0-data negative)
Dx : Data Bits
EN : Enable Bit (0-keep previous mode, 1-change mode)
SGL : Enable Single-Ended Bit (0-differential, 1-single-ended)
Sx : Address Select Bit
0SRX : Over Sampling Rate Bits
| CONVERSION RATE |
| INTERNAL | EXTERNAL |
OSR4 OSR3 OSR2 OSR1 OSR1 | 9MHz CLOCK | 10.24MHz CLOCK | RMS NOISE | ENOB | OSR
x 0 0 0 1 3.52kHz 4kHz 23uV 17 64
x 0 0 1 0 1.76kHz 2kHz 3.5uV 20 128
0 0 0 0 0 880Hz 1kHz 2uV 21.3 256*
x 0 0 1 1 880Hz 1kHz 2uV 21.3 256
x 0 1 0 0 440Hz 500Hz 1.4uV 21.8 512
x 0 1 0 1 220Hz 250Hz 1uV 22.4 1024
x 0 1 1 0 110Hz 125Hz 750nV 22.9 2048
x 0 1 1 1 55Hz 62.5Hz 510nV 23.4 4096
x 1 0 0 0 27.5Hz 31.25Hz 375nV 24 8192
X 1 0 0 1 13.75Hz 15.625Hz 250nV 24.4 16384
X 1 1 1 1 6.87kHz 7.8125Hz 200nV 24.6 32768**
** Address allows tying SDI HIGH *Additional address to allow tying SDI LOW
Example Code:
Read ADC with OSR of 65536
uint16_t miso_timeout = 1000;
if(!LTC2440_EOC_timeout(LTC2440_CS, miso_timeout)) // Check for EOC
LTC2440_read(LTC2440_CS, adc_command, &adc_code); // Throws out reading
else
{
return;
}
if(!LTC2440_EOC_timeout(LTC2440_CS, miso_timeout)) // Check for EOC
LTC2440_read(LTC2440_CS, adc_command, &adc_code); // Take valid reading
else
{
return;
}
// Convert adc_code to voltage
adc_voltage = LTC2440_code_to_voltage(adc_code, LTC2440_vref);
@endverbatim
http://www.linear.com/product/LTC2440
http://www.linear.com/product/LTC2440#demoboards
REVISION HISTORY
$Revision: 2261 $
$Date: 2014-03-17 08:29:47 -0700 (Mon, 17 Mar 2014) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC2440
Header for LTC2440: 24-Bit, Differential Delta Sigma ADCs with Selectable Speed/Resolution.
*/
#ifndef LTC2440_H
#define LTC2440_H
//! Define the SPI CS pin
#ifndef LTC2440_CS
#define LTC2440_CS QUIKEVAL_CS
#endif
/*! @name Oversample Ratio (OSR) Commands
@{ */
#define LTC2440_OSR_64 0x08
#define LTC2440_OSR_128 0x10
#define LTC2440_OSR_256_ 0x00 // See note above
#define LTC2440_OSR_256 0x18
#define LTC2440_OSR_512 0x20
#define LTC2440_OSR_1024 0x28
#define LTC2440_OSR_2048 0x30
#define LTC2440_OSR_4096 0x38
#define LTC2440_OSR_8192 0x40
#define LTC2440_OSR_16384 0x48
#define LTC2440_OSR_32768 0x78
/*! @}*/
//! Checks for EOC with a specified timeout.
//! @return Returns 0=successful, 1=unsuccessful (exceeded timeout)
int8_t LTC2440_EOC_timeout(uint8_t cs, //!< Chip Select pin
uint16_t miso_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC2440.
void LTC2440_read( uint8_t cs, //!< Chip select
uint8_t adc_command, //!< 1 byte command written to LTC2440
int32_t *adc_code //!< 4 byte conversion code read from LTC2440
);
//! Calculates the voltage corresponding to an adc code, given the reference (in volts)
//! @return Returns voltage calculated from ADC code.
float LTC2440_code_to_voltage(int32_t adc_code, //!< Code read from adc
float vref //!< VRef (in volts)
);
#endif // LTC2440_HDownload LTC2440 - Linduino.CPP File
/*!
LTC2440: 24-Bit, Differential Delta Sigma ADCs with Selectable Speed/Resolution.
@verbatim
The LTC2440 is a high speed 24-bit No Latency Delta Sigma TM ADC with 5ppm
INL and 5uV offset. It uses proprietary delta-sigma architecture enabling
variable speed and resolution with no latency. Ten speed/resolution
combinations (6.9Hz/200nVRMS to 3.5kHz/25uVRMS) are programmed through a
simple serial interface. Alternatively, by tying a single pin HIGH or
LOW, a fast (880Hz/2uVRMS) or ultralow noise (6.9Hz, 200nVRMS, 50/60Hz
rejection) speed/resolution combination can be easily selected. The
accuracy (offset, full-scale, linearity, drift) and power dissipation are
independent of the speed selected. Since there is no latency, a
speed/resolution change may be made between conversions with no
degradation in performance.
@endverbatim
http://www.linear.com/product/LTC2440
http://www.linear.com/product/LTC2440#demoboards
REVISION HISTORY
$Revision: 2273 $
$Date: 2014-03-17 15:32:46 -0700 (Mon, 17 Mar 2014) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
//! @defgroup LTC2440 LTC2440: 24-Bit, Differential Delta Sigma ADCs with Selectable Speed/Resolution
/*! @file
@ingroup LTC2440
Library for LTC2440: 24-Bit, Differential Delta Sigma ADCs with Selectable Speed/Resolution
*/
#include <stdint.h>
#include <Arduino.h>
#include "Linduino.h"
#include "LT_I2C.h"
#include "LT_SPI.h"
#include "LTC2440.h"
#include "LTC24XX_general.h"
// Checks for EOC with a specified timeout.
// Returns 0=successful, 1=unsuccessful (exceeded timeout)
int8_t LTC2440_EOC_timeout(uint8_t cs, uint16_t miso_timeout)
{
return(LTC24XX_EOC_timeout(cs, miso_timeout));
}
// Reads from LTC2440.
void LTC2440_read(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
{
LTC24XX_SPI_8bit_command_32bit_data(cs, adc_command, adc_code); // Transfer data
}
// Calculates the voltage corresponding to an ADC code, given the reference (in volts)
float LTC2440_code_to_voltage(int32_t adc_code, float vref)
{
return(LTC24XX_diff_code_to_voltage(adc_code, vref));
}
Download LTC24XX – Linduino Header File
/*!
LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs.
@verbatim
LTC2442 / LTC2444 / LTC2445 / LTC2448 / LTC2449 (Are there don't care bits in the low channel counts?
SPI DATA FORMAT (MSB First):
Byte #1 Byte #2
Data Out : !EOC DMY SIG D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16
Data In : 1 0 EN SGL OS S2 S1 S0 OSR3 OSR2 OSR1 OSR1 SPD X X X
Byte #3 Byte #4
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 *D3 *D2 *D1 *D0
X X X X X X X X X X X X X X X X
!EOC : End of Conversion Bit (Active Low)
DMY : Dummy Bit (Always 0)
SIG : Sign Bit (1-data positive, 0-data negative)
Dx : Data Bits
*Dx : Data Bits Below lsb
EN : Enable Bit (0-keep previous mode, 1-change mode)
SGL : Enable Single-Ended Bit (0-differential, 1-single-ended)
OS : ODD/Sign Bit
Sx : Address Select Bit
0SRX : Over Sampling Rate Bits
SPD : Double Output Rate Select Bit (0-Normal rate, auto-calibration on, 2x rate, auto_calibration off)
Command Byte #1
1 0 EN SGL OS S2 S1 S0 Comments
1 0 0 X X X X X Keep Previous Mode
1 0 1 0 X X X X Differential Mode
1 0 1 1 X X X X Single-Ended Mode
| Coversion Rate | RMS | ENOB | OSR | Latency
Command Byte #2 |Internal | External | Noise | | |
| 9MHz | 10.24MHz | | | |
OSR3 OSR2 OSR1 OSR1 SPD | Clock | Clock | | | |
0 0 0 0 0 Keep Previous Speed/Resolution
0 0 0 1 0 3.52kHz 4kHz 23uV 17 64 none
0 0 1 0 0 1.76kHz 2kHz 3.5uV 20.1 128 none
0 0 1 1 0 880Hz 1kHz 2uV 21.3 256 none
0 1 0 0 0 440Hz 500Hz 1.4uV 21.8 512 none
0 1 0 1 0 220Hz 250Hz 1uV 22.4 1024 none
0 1 1 0 0 110Hz 125Hz 750nV 22.9 2048 none
0 1 1 1 0 55Hz 62.5Hz 510nV 23.4 4096 none
1 0 0 0 0 27.5Hz 31.25Hz 375nV 24 8192 none
1 0 0 1 0 13.75Hz 15.625Hz 250nV 24.4 16384 none
1 1 1 1 0 6.87kHz 7.8125Hz 200nV 24.6 32768 none
0 0 0 0 1 Keep Previous Speed/Resolution
OSR3 OSR2 OSR1 OSR1 1 2X Mode *all clock speeds double
Example Code:
Read Channel 0 in Single-Ended with OSR of 65536
uint16_t miso_timeout = 1000;
adc_command = LTC2449_CH0 | LTC2449_OSR_32768 | LTC2449_SPEED_2X; // Build ADC command for channel 0
// OSR = 32768*2 = 65536
if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC
return; // Exit if timeout is reached
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out last reading
if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC
return; // Exit if timeout is reached
LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Obtains the current reading and stores to adc_code variable
// Convert adc_code to voltage
adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code);
@endverbatim
http://www.linear.com/product/LTC2449
http://www.linear.com/product/LTC2449#demoboards
REVISION HISTORY
$Revision: 1881 $
$Date: 2013-08-15 09:16:50 -0700 (Thu, 15 Aug 2013) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
/*! @file
@ingroup LTC24XX_general
Header for LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
*/
#ifndef LTC24XX_general_H
#define LTC24XX_general_H
//! Define the SPI CS pin
#ifndef LTC24XX_CS
#define LTC24XX_CS QUIKEVAL_CS
#endif
//! In 2X Mode, A non offset binary 0 can be produced. This is corrected in the
//! differential code to voltage functions. To disable this correction, uncomment
//! The following #define.
//#define SKIP_EZDRIVE_2X_ZERO_CHECK
/*! @name Mode Configuration for High Speed Family
@{
*/
#define LTC24XX_HS_MULTI_KEEP_PREVIOUS_MODE 0x80
#define LTC24XX_HS_MULTI_KEEP_PREVIOUS_SPEED_RESOLUTION 0x00
#define LTC24XX_HS_MULTI_SPEED_1X 0x00
#define LTC24XX_HS_MULTI_SPEED_2X 0x08
/*!
@}
*/
/*! @name Mode Configuration for EasyDrive Family
@{
*/
// Select ADC source - differential input or PTAT circuit
#define LTC24XX_EZ_MULTI_VIN 0b10000000
#define LTC24XX_EZ_MULTI_PTAT 0b11000000
// Select rejection frequency - 50, 55, or 60Hz
#define LTC24XX_EZ_MULTI_R50 0b10010000
#define LTC24XX_EZ_MULTI_R55 0b10000000
#define LTC24XX_EZ_MULTI_R60 0b10100000
// Speed settings is bit 7 in the 2nd byte
#define LTC24XX_EZ_MULTI_SLOW 0b10000000 // slow output rate with autozero
#define LTC24XX_EZ_MULTI_FAST 0b10001000 // fast output rate with no autozero
/*!
@}
*/
/*! @name Single-Ended Channel Configuration
@verbatim
Channel selection for all multi-channel, differential input ADCs, even those that only require
8 bits of configuration (no further options.) Most devices in this category require a second
byte of configuration for speed mode, temperature sensor selection, etc., but for the sake
of simplicity a single function will be used to read all devices, sending zeros in the second
configuration byte if only the channel is specified.
Applicable devices:
Easy Drive:
LTC2486, LTC2487, LTC2488, LTC2489, LTC2492, LTC2493,
LTC2494, LTC2495, LTC2496, LTC2497, LTC2498, LTC2499
First Generation Differential:
LTC2414, LTC2418, LTC2439
High Speed:
LTC2442, LTC2444, LTC2445, LTC2448, LTC2449
@endverbatim
@{ */
#define LTC24XX_MULTI_CH_CH0 0xB0
#define LTC24XX_MULTI_CH_CH1 0xB8
#define LTC24XX_MULTI_CH_CH2 0xB1
#define LTC24XX_MULTI_CH_CH3 0xB9
#define LTC24XX_MULTI_CH_CH4 0xB2
#define LTC24XX_MULTI_CH_CH5 0xBA
#define LTC24XX_MULTI_CH_CH6 0xB3
#define LTC24XX_MULTI_CH_CH7 0xBB
#define LTC24XX_MULTI_CH_CH8 0xB4
#define LTC24XX_MULTI_CH_CH9 0xBC
#define LTC24XX_MULTI_CH_CH10 0xB5
#define LTC24XX_MULTI_CH_CH11 0xBD
#define LTC24XX_MULTI_CH_CH12 0xB6
#define LTC24XX_MULTI_CH_CH13 0xBE
#define LTC24XX_MULTI_CH_CH14 0xB7
#define LTC24XX_MULTI_CH_CH15 0xBF
/*! @} */
/*! @name Differential Channel Configuration
@verbatim
See note for single-ended configuration above.
@endverbatim
@{ */
#define LTC24XX_MULTI_CH_P0_N1 0xA0
#define LTC24XX_MULTI_CH_P1_N0 0xA8
#define LTC24XX_MULTI_CH_P2_N3 0xA1
#define LTC24XX_MULTI_CH_P3_N2 0xA9
#define LTC24XX_MULTI_CH_P4_N5 0xA2
#define LTC24XX_MULTI_CH_P5_N4 0xAA
#define LTC24XX_MULTI_CH_P6_N7 0xA3
#define LTC24XX_MULTI_CH_P7_N6 0xAB
#define LTC24XX_MULTI_CH_P8_N9 0xA4
#define LTC24XX_MULTI_CH_P9_N8 0xAC
#define LTC24XX_MULTI_CH_P10_N11 0xA5
#define LTC24XX_MULTI_CH_P11_N10 0xAD
#define LTC24XX_MULTI_CH_P12_N13 0xA6
#define LTC24XX_MULTI_CH_P13_N12 0xAE
#define LTC24XX_MULTI_CH_P14_N15 0xA7
#define LTC24XX_MULTI_CH_P15_N14 0xAF
/*! @} */
/*Commands
Construct a channel / resolution control word by bitwise ORing one choice from the channel configuration
and one choice from the Oversample ratio configuration. You can also enable 2Xmode, which will increase
sample rate by a factor of 2 but introduce one cycle of latency.
Example - read channel 3 single-ended at OSR2048, with 2X mode enabled.
adc_command = (LTC2449_CH3 | LTC2449_OSR_2048) | LTC2449_SPEED_2X;
*/
/*! @name Oversample Ratio (OSR) Commands
@{ */
#define LTC24XX_MULTI_CH_OSR_64 0x10
#define LTC24XX_MULTI_CH_OSR_128 0x20
#define LTC24XX_MULTI_CH_OSR_256 0x30
#define LTC24XX_MULTI_CH_OSR_512 0x40
#define LTC24XX_MULTI_CH_OSR_1024 0x50
#define LTC24XX_MULTI_CH_OSR_2048 0x60
#define LTC24XX_MULTI_CH_OSR_4096 0x70
#define LTC24XX_MULTI_CH_OSR_8192 0x80
#define LTC24XX_MULTI_CH_OSR_16384 0x90
#define LTC24XX_MULTI_CH_OSR_32768 0xF0
/*! @}*/
//! Checks for EOC with a specified timeout. Applies to all SPI interface delta sigma
//! ADCs that have SINC4 rejection, does NOT apply to LTC2450/60/70 family.
//! @return Returns 0=successful, 1=unsuccessful (exceeded timeout)
int8_t LTC24XX_EOC_timeout(uint8_t cs, //!< Chip Select pin
uint16_t miso_timeout //!< Timeout (in milliseconds)
);
// Read functions for SPI interface ADCs with a 32 bit output word. These functions are used with both
// Single-ended and differential parts, as there is no interpretation of the data done in
// the function. Also note that these functions can be used for devices that have shorter output lengths,
// the lower bits will read out as "1", as the conversion will be triggered by the last data bit being
// read, which causes SDO to go high.
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_32bit_data(uint8_t cs, //!< Chip Select pin
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command, //!< 1 byte command written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command_high, //!< First command byte written to LTC24XX
uint8_t adc_command_low, //!< Second command written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
//! @return void
void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, //!< Chip Select pin
uint8_t *adc_channel, //!< Returns channel number read.
int32_t *code //!< 4 byte conversion code read from LTC24XX
);
// Read functions for SPI interface ADCs with a 24 bit or 19 bit output word. These functions
// are used with both Single-ended and differential parts, as there is no interpretation of
// the data done in the function. 24 bits will be read out of 19 bit devices
// (LTC2433, LTC2436, LTC2439), with the additional 5 bits being set to 1.
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_24bit_data(uint8_t cs, //!< Chip Select pin
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command, //!< 1 byte command written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command_high, //!< First command byte written to LTC24XX
uint8_t adc_command_low, //!< Second command written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX ADC that accepts a 8 bit configuration and returns a 16 bit result.
//! @return void
void LTC24XX_SPI_8bit_command_16bit_data(uint8_t cs, //!< Chip Select pin
uint8_t adc_command, //!< First command byte written to LTC24XX
int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
);
//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
//! @return void
void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, //!< Chip Select pin
uint8_t *adc_channel, //!< Returns channel number read.
int32_t *code //!< 4 byte conversion code read from LTC24XX
);
// Read functions for I2C interface ADCs with a 32 bit output word. These functions are used with both
// Single-ended and differential parts, as there is no interpretation of the data done in
// the function. Also note that these functions can be used for devices that have shorter output lengths,
// the lower bits will read out as "1", as the conversion will be triggered by the last data bit being
// read, which causes SDO to go high.
// Data is formatted to match the SPI devices, with the MSB in the bit 28 position.
// Unlike the SPI members of this family, checking for EOC MUST immediately be followed by reading the data. This
// is because a stop condition will trigger a new conversion.
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, //!< I2C address of device
uint8_t adc_command, //!< 1 byte command written to LTC24XX
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address, //!< I2C address of device
uint8_t adc_command_high, //!< First command byte written to LTC24XX
uint8_t adc_command_low, //!< Second command written to LTC24XX
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
// Read functions for I2C interface ADCs with a 24 bit or 19 bit output word. These functions
// are used with both Single-ended and differential parts, as there is no interpretation of
// the data done in the function. 24 bits will be read out of 19 bit devices
// (LTC2433, LTC2436, LTC2439), with the additional 5 bits being set to 1.
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! Applies to: LTC2483 (only this lonely one!)
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_24bit_data(uint8_t i2c_address, //!< I2C address of device
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, //!< I2C address of device
uint8_t adc_command, //!< 1 byte command written to LTC24XX
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_16bit_command_24bit_data(uint8_t i2c_address, //!< I2C address of device
uint8_t adc_command_high, //!< First command byte written to LTC24XX
uint8_t adc_command_low, //!< Second command written to LTC24XX
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
);
//! Calculates the voltage corresponding to an ADC code, given the reference voltage.
//! Applies to Single-Ended input parts (LTC2400-type input)
//! @return Returns voltage calculated from ADC code.
float LTC24XX_SE_code_to_voltage(int32_t adc_code, //!< Code read from ADC
float vref //!< Reference voltage
);
//! Calculates the voltage corresponding to an ADC code, given the reference voltage.
//! Applies to differential input parts (LTC2410 type input)
//! @return Returns voltage calculated from ADC code.
float LTC24XX_diff_code_to_voltage(int32_t adc_code, //!< Code read from ADC
float vref //!< Reference voltage
);
//! Calculates the voltage corresponding to an ADC code, given lsb weight (in volts) and the calibrated
//! ADC offset code (zero code that is subtracted from adc_code).
//! Applies to differential input, SPI interface parts.
//! @return Returns voltage calculated from ADC code.
float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, //!< Code read from ADC
float LTC24XX_lsb, //!< LSB weight (in volts)
int32_t LTC24XX_offset_code //!< The calibrated offset code (This is the ADC code zero code that will be subtracted from adc_code)
);
//! Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
//! @return Void
void LTC24XX_calibrate_voltage(int32_t zero_code, //!< Measured code with the inputs shorted to ground
int32_t fs_code, //!< Measured code at nearly full-scale
float zero_voltage, //!< Measured zero voltage
float fs_voltage, //!< Voltage measured at input (with voltmeter) when fs_code was read from ADC
float *LTC24XX_lsb, //!< Overwritten with lsb weight (in volts)
int32_t *LTC24XX_offset_code //!< Overwritten with offset code (zero code)
);
// I2C Addresses for 8/16 channel parts (LTC2495/7/9)
// ADDRESS CA2 CA1 CA0
// #define LTC24XX_16CH_I2C_ADDRESS 0b0010100 // LOW LOW LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b0010110 // LOW LOW HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b0010101 // LOW LOW FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b0100110 // LOW HIGH LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b0110100 // LOW HIGH HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b0100111 // LOW HIGH FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b0010111 // LOW FLOAT LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b0100101 // LOW FLOAT HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b0100100 // LOW FLOAT FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1010110 // HIGH LOW LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1100100 // HIGH LOW HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1010111 // HIGH LOW FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1110100 // HIGH HIGH LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1110110 // HIGH HIGH HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1110101 // HIGH HIGH FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1100101 // HIGH FLOAT LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1100111 // HIGH FLOAT HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1100110 // HIGH FLOAT FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b0110101 // FLOAT LOW LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b0110111 // FLOAT LOW HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b0110110 // FLOAT LOW FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1000111 // FLOAT HIGH LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1010101 // FLOAT HIGH HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1010100 // FLOAT HIGH FLOAT
// #define LTC24XX_16CH_I2C_ADDRESS 0b1000100 // FLOAT FLOAT LOW
// #define LTC24XX_16CH_I2C_ADDRESS 0b1000110 // FLOAT FLOAT HIGH
// #define LTC24XX_16CH_I2C_ADDRESS 0b1000101 // FLOAT FLOAT FLOAT
// I2C Addresses for 2/4 channel parts
// ADDRESS CA1 CA0
// #define LTC24XX_4CH_I2C_ADDRESS 0b0010100 // LOW LOW
// #define LTC24XX_4CH_I2C_ADDRESS 0b0010110 // LOW HIGH
// #define LTC24XX_4CH_I2C_ADDRESS 0b0010101 // LOW FLOAT
// #define LTC24XX_4CH_I2C_ADDRESS 0b0100110 // HIGH LOW
// #define LTC24XX_4CH_I2C_ADDRESS 0b0110100 // HIGH HIGH
// #define LTC24XX_4CH_I2C_ADDRESS 0b0100111 // HIGH FLOAT
// #define LTC24XX_4CH_I2C_ADDRESS 0b0010111 // FLOAT LOW
// #define LTC24XX_4CH_I2C_ADDRESS 0b0100101 // FLOAT HIGH
// #define LTC24XX_4CH_I2C_ADDRESS 0b0100100 // FLOAT FLOAT
// I2C Addresses for Single channel parts (LTC2481/83/85)
// ADDRESS CA1 CA0/f0*
// #define LTC24XX_1CH_I2C_ADDRESS 0b0010100 // LOW HIGH
// #define LTC24XX_1CH_I2C_ADDRESS 0b0010101 // LOW FLOAT
// #define LTC24XX_1CH_I2C_ADDRESS 0b0010111 // FLOAT HIGH
// #define LTC24XX_1CH_I2C_ADDRESS 0b0100100 // FLOAT FLOAT
// #define LTC24XX_1CH_I2C_ADDRESS 0b0100110 // HIGH HIGH
// #define LTC24XX_1CH_I2C_ADDRESS 0b0100111 // HIGH FLOAT
#endif // LTC24XX_general_H
Download LTC24XX – Linduino.CPP File
/*!
LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs.
@verbatim
These functions and defines apply to all No Latency Delta Sigmas in the
LTC2480 EasyDrive family, LTC2410 differential family, LTC2400 single-ended family,
and the LTC2440 High Speed family with selectable speed / resolution.
It does not cover the LTC2450 tiny, low cost delta sigma ADC famliy.
Please refer to the No Latency Delta Sigma ADC selector guide available at:
http://www.linear.com/docs/41341
@endverbatim
http://www.linear.com/product/LTC2449
http://www.linear.com/product/LTC2449#demoboards
REVISION HISTORY
$Revision: 1807 $
$Date: 2013-07-29 13:06:06 -0700 (Mon, 29 Jul 2013) $
Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.
The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community. Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/
//! @defgroup LTC24XX LTC24XX: All no-latency delta sigma ADCs with SINC4 rejection
/*! @file
@ingroup LTC24XX
Library for LTC24XX no-latency delta sigma ADCs with SINC4 rejection
*/
#include <stdint.h>
#include <Arduino.h>
#include "Linduino.h"
#include <SPI.h>
#include "LT_SPI.h"
#include <Wire.h>
#include "LT_I2C.h"
#include "LTC24XX_general.h"
int8_t LTC24XX_EOC_timeout(uint8_t cs, uint16_t miso_timeout)
// Checks for EOC with a specified timeout (ms)
{
uint16_t timer_count = 0; // Timer count for MISO
output_low(cs); //! 1) Pull CS low
while (1) //! 2) Wait for SDO (MISO) to go low
{
if (input(MISO) == 0) break; //! 3) If SDO is low, break loop
if (timer_count++>miso_timeout) // If timeout, return 1 (failure)
{
output_high(cs); // Pull CS high
return(1);
}
else
delay(1);
}
output_high(cs); // Pull CS high
return(0);
}
// Reads from LTC24XX ADC that has no configuration word and a 32 bit output word.
void LTC24XX_SPI_32bit_data(uint8_t cs, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC2449 data and command
command.LT_uint32 = 0; // Set to zero, not necessary but avoids
// random data in scope shots.
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
*adc_code = data.LT_int32;
}
// Reads from a SPI LTC24XX device that has an 8 bit command and a 32 bit output word.
void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC2449 data and command
command.LT_byte[3] = adc_command;
command.LT_byte[2] = 0;
command.LT_byte[1] = 0;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
*adc_code = data.LT_int32;
}
// Reads from a SPI LTC24XX device that has a 16 bit command and a 32 bit output word.
void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC24XX data and command
command.LT_byte[3] = adc_command_high;
command.LT_byte[2] = adc_command_low;
command.LT_byte[1] = 0;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
*adc_code = data.LT_int32;
}
//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
//! @return void
void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
{
LT_union_int32_4bytes data, command; // ADC data
command.LT_int32 = 0x00000000; // This is a "don't care"
spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)4);
if(data.LT_byte[3] & 0x40) // Obtains Channel Number
{
*adc_channel = 1;
}
else
{
*adc_channel = 0;
}
data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
*code = data.LT_int32; // Return data
}
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! @return void
void LTC24XX_SPI_24bit_data(uint8_t cs, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC24XX data and command
command.LT_int32 = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
*adc_code = data.LT_int32;
}
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit output word.
//! @return void
void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC24XX data and command
command.LT_byte[2] = adc_command;
command.LT_byte[1] = 0;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
*adc_code = data.LT_int32;
}
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 24 bit output word.
//! @return void
void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
{
LT_union_int32_4bytes data, command; // LTC24XX data and command
command.LT_byte[2] = adc_command_high;
command.LT_byte[1] = adc_command_low;
command.LT_byte[0] = 0;
output_low(cs); //! 1) Pull CS low
spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
output_high(cs); //! 3) Pull CS high
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
*adc_code = data.LT_int32;
}
//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
//! and returning the 24 bit result with the channel bit cleared so the data format matches the rest of the family
//! @return void
void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
{
LT_union_int32_4bytes data, command; // ADC data
command.LT_int32 = 0x00000000; // This is a "don't care"
spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)3);
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
if(data.LT_byte[3] & 0x40) // Obtains Channel Number
{
*adc_channel = 1;
}
else
{
*adc_channel = 0;
}
data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
*code = data.LT_int32; // Return data
}
//I2C functions
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
{
int8_t ack;
uint16_t timer_count = 0; // Timer count to wait for ACK
int8_t buf[4];
LT_union_int32_4bytes data; // LTC24XX data
while(1)
{
ack = i2c_read_block_data(i2c_address, adc_command, 3, data.LT_byte);
if(!ack) break; // !ack indicates success
if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
return(1);
else
delay(1);
}
data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
data.LT_byte[1] = data.LT_byte[0]; // justify.
data.LT_byte[0] = 0x00;
data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
*adc_code = data.LT_int32;
return(ack); // Success
}
//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
//! Data is formatted to match the SPI devices, with the MSB in the bit 28 position.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device
int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
uint16_t eoc_timeout //!< Timeout (in milliseconds)
)
{
int8_t ack;
uint16_t timer_count = 0; // Timer count to wait for ACK
int8_t buf[4];
LT_union_int32_4bytes data; // LTC24XX data
while(1)
{
ack = i2c_read_block_data(i2c_address, 4, data.LT_byte);
if(!ack) break; // !ack indicates success
if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
return(1);
else
delay(1);
}
data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
*adc_code = data.LT_int32;
return(ack); // Success
}
//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
{
int8_t ack;
uint16_t timer_count = 0; // Timer count to wait for ACK
int8_t buf[4];
LT_union_int32_4bytes data; // LTC24XX data
while(1)
{
ack = i2c_read_block_data(i2c_address, adc_command, 4, data.LT_byte);
if(!ack) break; // !ack indicates success
if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
return(1);
else
delay(1);
}
data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
*adc_code = data.LT_int32;
return(ack); // Success
}
//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address,uint8_t adc_command_high,
uint8_t adc_command_low,int32_t *adc_code,uint16_t eoc_timeout)
{
int8_t ack;
uint16_t adc_command, timer_count = 0; // Timer count to wait for ACK
int8_t buf[4];
LT_union_int32_4bytes data; // LTC24XX data
adc_command = (adc_command_high << 8) | adc_command_low;
while(1)
{
ack = i2c_two_byte_command_read_block(i2c_address, adc_command, 4, data.LT_byte);
if(!ack) break; // !ack indicates success
if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
return(1);
else
delay(1);
}
data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
*adc_code = data.LT_int32;
return(ack); // Success
}
// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
float LTC24XX_SE_code_to_voltage(int32_t adc_code, float vref)
{
float voltage;
adc_code -= 0x20000000; //! 1) Subtract offset
voltage=(float) adc_code;
voltage = voltage / 268435456.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
return(voltage);
}
// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
// This function handles all differential input parts, including the "single-ended" mode on multichannel
// differential parts. Data from I2C parts must be right-shifted by two bit positions such that the MSB
// is in bit 28 (the same as the SPI parts.)
float LTC24XX_diff_code_to_voltage(int32_t adc_code, float vref)
{
float voltage;
#ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
if(adc_code == 0x00000000)
{
adc_code = 0x20000000;
}
#endif
adc_code -= 0x20000000; //! 1) Converts offset binary to binary
voltage=(float) adc_code;
voltage = voltage / 536870912.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
return(voltage);
}
// Calculates the voltage corresponding to an adc code, given lsb weight (in volts) and the calibrated
// adc offset code (zero code that is subtracted from adc_code). For use with the LTC24XX_cal_voltage() function.
float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, float LTC2449_lsb, int32_t LTC2449_offset_code)
{
float adc_voltage;
#ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
if(adc_code == 0x00000000)
{
adc_code = 0x20000000;
}
#endif
adc_code -= 536870912; //! 1) Converts offset binary to binary
adc_voltage=(float)(adc_code+LTC2449_offset_code)*LTC2449_lsb; //! 2) Calculate voltage from ADC code, lsb, offset.
return(adc_voltage);
}
// Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
void LTC24XX_calibrate_voltage(int32_t zero_code, int32_t fs_code, float zero_voltage, float fs_voltage, float *LTC24XX_lsb, int32_t *LTC24XX_offset_code)
{
zero_code -= 536870912; //! 1) Converts zero code from offset binary to binary
fs_code -= 536870912; //! 2) Converts full scale code from offset binary to binary
float temp_offset;
*LTC24XX_lsb = (fs_voltage-zero_voltage)/((float)(fs_code - zero_code)); //! 3) Calculate the LSB
temp_offset = (zero_voltage/ *LTC24XX_lsb) - zero_code; //! 4) Calculate Unipolar offset
temp_offset = (temp_offset > (floor(temp_offset) + 0.5)) ? ceil(temp_offset) : floor(temp_offset); //! 5) Round
*LTC24XX_offset_code = (int32_t)temp_offset; //! 6) Cast as int32_t
}
Technical Support
- For immediate technical assistance, contact your local sales office or distributor or call 1-800-4-LINEAR (US customers only) or 408-432-1900.
- For less urgent requests, please complete our Technical Support Request Form. Please allow 2-3 business days for reply.
